Effect of Arginine, Proline, and Glutamine Amino Acids on Morphological and Physiological Traits of Two African Marigold (Tagetes erecta L.) Cultivars
محورهای موضوعی : مجله گیاهان زینتیFatemeh Raoof Haghparvar 1 , Davood Hashemabadi 2 , Behzad Kaviani 3
1 - Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran
3 - Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran
کلید واژه: Phenol compounds, Edible flower, Growth stimulator, Organic nitrogen,
چکیده مقاله :
In addition to its ornamental and medicinal applications, marigold is considered an edible flower, too. To produce marigold with safe and non-chemical methods, a factorial experiment was conducted based on a completely randomized design with three replications and 20 treatments. The experimental treatments included two cultivars of marigold (‘Yellow’ and ‘Orange’) and three amino acids including arginine, glutamine, and proline at three levels (100, 500, and 1000 µM), as well as distilled water as the control treatment. The results showed that amino acids had positive effects on the recorded traits. The treatment of 100 µM arginine outperformed other treatments in increasing leaf number, flower diameter, shoot fresh weight, and shoot dry matter, reducing electrolyte leakage, and improving catalase activity in cv. ‘Orange’. In cv. ‘Yellow’, the highest leaf number, shoot fresh weight and root dry matter, the lowest polyphenol oxidase activity, the lowest electrolyte leakage, and the highest catalase activity were related to the treatment of 1000 µM proline. The highest total phenol was obtained from 100 µM arginine in two cultivar. With the application of amino acids, flavonoids were increased in both cultivars versus the control. Therefore, it is recommended to apply amino acids, especially arginine (100 µM) and proline (1000 µM), to produce marigolds ‘Orange’ and ‘Yellow’ in an organic way, respectively.
گل جعفری علاوه بر مصارف زینتی و دارویی اخیرا بهعنوان گل خوراکی نیز مورد توجه قرار گرفته است. در پژوهش حاضر بهمنظور تولید گلهای جعفری با روشهای سالم و غیر شیمیایی آزمایشی بصورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار با 20 تیمار اجرا شد. تیمارهای آزمایشی شامل دو رقم گل جعفری (زرد و نارنجی)، 3 نوع اسید آمینه آرژنین، گلوتامین و پرولین در 3 سطح (100، 500 و 1000 میکرومولار) و تیمار شاهد (آب مقطر) بودند. نتایج نشان داد که اسیدهای آمینه روی صفات ارزیابی شده اثر مثبت دارند و تیمار 100 میکرومولار آرژنین در صفات تعداد برگ، قطر گل، وزن تر و ماده خشک شاخساره، کاهش نشت یونی و افزایش فعالیت آنزیم کاتالاز در رقم نارنجی موفقترین تیمار است. در رقم زرد، بیشترین تعداد برگ، وزن تر شاخساره، ماده خشک ریشه، کمترین فعالیت آنزیم پلی فنل اکسیداز، کمترین نشت یونی و بیشترین فعالیت آنزیم کاتالاز برای تیمار 1000 میکرومولار پرولین ثبت شد. بیشترین فنل کل در هر دو رقم برای 100 میکرومولار آرژنین ثبت شد. با کاربرد اسیدهای آمینه مقدار فلاونوئیدها در هر دو رقم گل جعفری نسبت به شاهد افزایش یافت. بنابراین کاربرد اسیدهای آمینه بخصوص آرژنین (100 میکرومولار) و پرولین (1000 میکرومولار) بهترتیب برای تولید جعفری ’نارنجی‘ و ’زرد‘ به روش آلی و ارگانیک مناسب بوده و توصیه میشوند.
Abd El Hamid, E.M., Sadak, M.S. and Tawfik, M.M. 2016. Physiological response of fenugreek plant to the application of proline under different water regimes. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7 (3): 580-594.
Ahmadi, A. and Ceiocemardeh, A. 2004. Effect of drought stress on soluble carbohydrates, chlorophyll and proline in four adopted wheat cultivars with various climate of Iran. Journal of Agriculture Science, 35: 753-763.
Ali, E.F. and Hassan, F.A.S. 2013. Impact of foliar application of commercial amino acids nutrition on the growth and flowering of Tagetes erecta L. plant. Journal of Applied Sciences Research, 9 (1): 652-657.
Ali, Q., Ashraf, M. and Athar, H. 2007. Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pakistan Journal of Botany, 39: 1133-1144.
Ameri, A., Nasiri Mahallati, M. and Rezvani Moghadam, P. 2007. Effects of nitrogen and plant density on nitrogen use efficiency, flower yield and active substances of marigold (Calendula officinalis). Iranian Field Crop Research, 5 (2): 315-325.
Azarpira, E., Fathi, S., Sharafi, Y. and Najafian, S. 2020. Effect of some amino acids based biostimulants on medicinal mint (Mentha spicat L.) under salinity stress. Horticultural Plant Nutrition, 2 (2): 154 - 173.
Bahari, A., Pirdashti, H. and Yaghubi, M. 2013. The effects of amino acid fertilizers spraying on photosynthetic pigments and antioxidant enzymes of wheat (Triticum aestivum L.) under salinity stress. International Journal of Agronomy and Plant Production, 4 (4): 787-793.
Bailey Serres, J. and Mittler, R. 2006. The roles of reactive oxygen species in plant cells. Plant Physiology, 141 (2): 311. https://doi.org/10.1104/pp.104.900191
Bidaki, S., Tehranifar, A. and Khorassani, R. 2018. Postharvest shelf life extension of fruits of two strawberry (Fragaria× ananassa Duch.) cultivars with amino acids application in soilless culture system. Journal of Science and Technology of Greenhouse Culture, 2 (34): 1 - 9.
Cao, J.X., Peng, Z.P., Huang, J.C., Yu, J.H., Li, W.N., Yang, L.X. and Lin, Z.J. 2010. Effect of foliar application of amino acid on yield and quality of flowering Chinese cabbage. Chinese Agriculture Science Bulletin, 26: 162-165.
Cerdana, M., Sanchez, A., Oliver, M., Juarez, M. and Sanchez Andreu, J.J. 2009. Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Horticulturae, 830: 481-488.
Chaudhary, U.C., Singh, A., Ahlawat, T.R. and Tatte, S. 2018. Effect of various levels of nitrogen on quantitative and qualitative parameters of rose var. “Top Secret” under poly house condition. Journal of Applied and Natural Science, 10 (1): 417 – 420.
Constabel, C.P. and Barbehenn, R. 2008. Defensive roles of polyphenol oxidase in plants. In: Schaller, A. (eds). Induced plant resistance to herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_12
de la Rosa, L.A., Moreno-Escamilla, J.O., Rodrigo-García, J. and Alvarez-Parrilla, E. 2019. Phenolic compounds. Postharvest Physiology and Biochemistry of Fruits and Vegetables, 253-271. https://doi.org/10.1016/B978-0-12-813278-4.00012-9
de Sousa1, A., Elgawad, H.A, Fidalgo, F., Teixeira, J., Matos, M., Hamed, B.A., Selim, S., Hozzein, W.N., Beemster, G.T.S. and Asard, H. 2020. Al exposure increases proline levels by different pathways in an Al‑sensitive and an Al‑tolerant rye genotype. Scientific Reports, 10: 16401. https://doi.org/10.1038/s41598-020-73358-9
Dhindsa, R.S., Plumb-Dhinds, D. and Thorpe, T.A. 1981. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32: 93-101.
Dinoo, Y.S., Boodina, N. and Sembhoo, C. 2009. Effects of naturally occurring amino acid stimulants on the growth and yield of hot peppers (Capsicum annum L.). Journal of Animal and Plant Sciences, 5 (1): 414 - 24.
Du, G., Li, M., Ma, F. and Liang, D. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113: 557-562.
El-Din, K.M.G. and El-Wahed, M.S.A. 2005. Effect of some amino acids on growth and essential oil content of chamomile plant. International Journal of Agriculture and Biology, 7 (3): 376–380.
Faten, S.A., Shaheen, A.M., Ahmed, A.A. and Mahmoud, A.R. 2010. Effect of foliar application of amino acids as antioxidant on growth, yield and characteristics of squash. Research Journal of Agriculture and Biological Science, 6 (5): 583-588.
Ghaffari, H., Tadayon, M. and Razmjoo, J. 2018. Effect foliar of proline on some physiological indices of sugar beet (Beta vulgari L.) to water deficit condition. Journal of Plant Process and Function, 7 (26): 13-25.
Groppa, M.D. and Benavides, M.P. 2008. Polyamines and abiotic stress recent advances. Amino Acids, 34: 35–45.
Hirose, T., Ackerly, D.D., Traw, M.B., Ramseier, D. and Bazzaz, F.A. 1997. CO2 elevation, canopy photosynthesis and optimal leaf area index. Ecology, 78: 2339-50.
Hua-Jing, W., Liang-Huan, W., Min-Yan, W., Yuan-Hong, Z., Qin-Nan, T. and Fu-Suo, Z. 2007. Effects of amino acids replacing nitrate on growth, nitrate accumulation, and macroelement concentrations in pak-choi (Brassica chinensis L.). Soil Science Society, 17: 595-600.
Jubault, M., Hamon, C., Gravot, A., Lariagon, C., Delourme, R., Bouchereau, A. and Manzanares-Dauleux, M.J. 2008. Differential regulation of root arginine catabolism and polyamine metabolism in club root-susceptible and partially resistant Arabidopsis genotypes. Plant Physiology, 146: 2008–2019.
Kaisoon, O., Konczak, I. and Siriamornpun, S. 2012. Potential health enhancing properties of edible flowers from Thailand. Food Research International, 46: 563–571.
Kaya, C., Higges, D. and Kirnak, H. 2001. The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Journal of Plant Physiology, 27 (3-4): 47-59.
Keutgen, A. and Pawelzik, E. 2008. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 111: 642-647.
Khattab, E.A. and Afifi, M.H. 2009. Effect of proline and glycinebetain on canola plants grown under salinity stress condition. Modern Journals of Applied Biological Sciences, 3: 42- 51.
Lin, T., Zhu, X. and Zhang, F. 2012. The interaction effect of cadmium and nitrogen on Populus yunnanensis. Journal of Agricultural Science, 4 (2): 125-134.
Liu, X.Q., Ko, K.Y., Kim, S.H. and Lee, K.S. 2008. Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Communications in Soil Science and Plant Analysis, 39: 269-281.
Nahed, G., Abdel Aziz, A., Mazher, A.M. and Farahat, M.M. 2010. Response of vegetative growth and chemical constituents of Thuja orientalis L. plant to foliar application of different amino acids at Nubaria. The Journal of American Science, 6 (3): 295 - 301.
Nicoli, M.C., Elizable, B.E., Piotti, A. and Lerici, C.R. 1991. Effect of sugar and maillard reaction products on polyphenol oxidase and peroxidase activity in food. Journal of Food Biochemistry, 15: 169-184.
Omidbaigi, R. 2007. Production and processing of medicinal plants. Behnashr, 347 page.
Oraghi Ardebili, Z., Ladan Moghadam, A.R., Oraghi Ardebili, N. and Pashaie, A.R. 2012. The induced physiological changes by foliar application of amino acids in Aloe vera L. plants. Plant Omics, 5 (3): 279-284.
Petrova, I., Petkova, N. and Ivanov, I. 2016. Five edible flowers – valuable source of antioxidants in human nutrition. International Journal of Pharmacognosy and Phytochemical Research, 8 (4): 604-610.
Raeisi, M., Farahani, L. and Palashi, M. 2014. Changes of qualitative and quantitative properties of radish (Raphanus sativus L.) under foliar spraying through amino acid. International Journal of Biosciences, 4 (1): 463-468.
Shehata, S.A., Gharib, A.A., El-Mogy, M.M., Gawad, A.K.F. and Shalaby, E.A. 2011. Influence of compost, amino and humic acids on the growth and yield and chemical parameters of strawberries. Journal of Medicinal Plants Research, 5: 2304-2308.
Simkin, A.J., López-Calcagno, P.E. and Raines, C.A. 2019. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 70 (4): 1119–1140. https://doi.org/10.1093/jxb/ery445
Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.S. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteau reagent. Methods in Enzymology, 299: 152-178.
Taiz, L. and Zeiger, E. 2010. Plant Physiology. 5th Ed., Sinauer Associates.
Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M. M., Pavan, S. and Montemurro, C. 2017. Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. International journal of molecular sciences, 18 (2): 377. https://doi.org/10.3390/ijms18020377
Taraseviciene, Z., Velicka, A. and Paulauskiene, A. 2021. Impact of foliar application of amino acids on total phenols, phenolic acids content of different mints varieties under the field condition. Plants, 10 (3): 599. https://doi.org/10.3390/plants10030599
Trovato, M., Matioli, R. and Costantino, P. 2008. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19: 325-346.
Youssef, H.A., Ali, S.A., Sanad, M.I. and Dawood, D.H. 2020. Chemical investigation of flavonoid, phenolic acids composition and antioxidant activity of African marigold (Tagetes erecta L.) flowers. Egyptian Journal of Chemistry, 63 (7): 2605-2615.