Energy Flows Modeling and Economic Evaluation of Watermelon Production in Fars Province of Iran
محورهای موضوعی : Farming SystemsSajad Rostami 1 , Maryam Lotfalian 2 , Bahram Hosseinzadeh 3 , مهدی قاسمی ورنامخستی 4
1 - Assistant Professor,
Department of Mechanics of Biosystem
Shahrekord University
2 - Department of Mechanics of Biosystem
Shahrekord University
3 - Department of mechanics of biosystem engineering, Shahrekord University
4 - Assistant Professor,
Department of Mechanics of Biosystem
Shahrekord University
کلید واژه: Artificial Neural Networks, Conservation, Energy use efficiency, Mechanized,
چکیده مقاله :
This study aimed to evaluate the efficiency of energy consumption and economic analysis of different watermelon cultivation systems in Fars Province of Iran. Watermelon production systems were classified into five systems, namely, custom tillage (group 1), conservation tillage (group 2), traditional planting (group3), semi mechanized planting (group 4), and mechanized planting (group 5). Data were collected from 317 watermelon producers from different parts of the province through face to face interviews. Multi-Layer Perceptron artificial neural networks were used to model the energy flows of watermelon production. The results showed that the greatest energy consumption belonged to mechanized planting system with the value of 81317.72 MJha-1 and with the productivity of 0.61 kgha-1and energy use efficiency of 1.17. Clustering function with three inputs (human resources, machines and diesel fuel) showed that the difference between groups 2 and 4 is more than the other groups. The least energy consumption belonged to the conservative agriculture as78163.86 MJha-1and the energy productivity and energy use efficiency about 0.64 kgha-1 and 1.22, respectively. The results of energy modeling showed that an ANN model with 9-10-1 structure was determined to be optimal for energy flow modeling of this system. Generally, it was concluded that the artificial neural network models can be applicable to prognosticate the energy flows of watermelon production. From an economic point of view, the least net profit belonged to traditional planting with the value of 2618.14$, and the most net return belonged to mechanized planting with the value of 2752.88$/ha.
این مطالعه با هدف بررسی بهرهوری انرژی مصرفی و آنالیز اقتصادی روشهای مختلف کشت هندوانه در استان فارس، کشور ایران انجام شد. روشهای تولید هندوانه به پنج گروه تقسیم شدند. این گروهها عبارت بودند از: خاکورزی مرسوم (گروه 1)، کشاورزی حفاظتی (گروه 2)، پاشش کود مکانیزه (گروه 3)، کاشت نیمه مکانیزه (گروه 4) و کاشت تمام مکانیزه (گروه 5). دادهها از 317 نفر از تولید کنندههای هندوانه از مناطق مختلف استان به صورت چهره به چهره جمعآوری شد. از شبکههای عصبی مصنوعی چند لایه برای مدلسازی جریان انرژی تولید هندوانه استفاده شد. نتایج نشان داد که بیشترین مصرف انرژی متعلق به روش کاشت تمام مکانیزه با ارزش MJ.ha-172/81317 و با بهرهوری kg.ha-1 61/0 و کارایی مصرف انرژی 17/1 بوده است. نتایج خوشهبندی با سه ورودی (منابع انسانی، ماشینآلات و سوخت دیزل) نشان داد که تفاوت بین گروههای 2 و 4 بیشتر از گروههای دیگر است. کمترین مصرف انرژی نیز برای گروه کشاورزی حفاظتی به میزان MJ.ha-1 86/78163 ، با بهرهوری kg.ha-1 64/0 و راندمان انرژی 22/1 برآورد شد. نتایج مدلسازی انرژی نشان داد که مدل ANN با ساختار 1-10-9 برای مدلسازی انرژی جریان انرژی این سیستم است. به طور کلی، نتیجهگیری شد که مدلهای شبکه عصبی مصنوعی میتواند برای پیشبینی جریانهای انرژی هندوانه استفاده شود. از منظر اقتصادی نیز کمترین سود خالص متعلق به روش کاشت کاملاً سنتی به میزان 82784 هزار ریال در هکتار و بیشترین آن نیز متعلق به گروه کاشت تمام مکانیزه به میزان 87092 هزار ریال در هکتار محاسبه شد.
Aase, J. K., & Pikul, J. L. (1995). Crop and soil response to long-term tillage practices in the northern Great Plains. Agronomy Journal, 87, 652–656.
Afsharzade , N., Papzan, A., Delangizan, S., & Ashjaee, M. (2016). On-farm energy use (Case of dire county, Kermanshah Province). International Journal of Agricultural Management and Development, 6(2), 217-224.
Alam, M. S., Alam, M. R., & Islam, K. K. (2005). Energy flow in agriculture, Bangladesh. American Journal of Environmental Sciences, 1(3), 213-220.
Banaeian, N., & Namdari, M. (2011). Effect of ownership on energy use efficiency in watermelon farms -A Data Envelopment Analysis Approach-. International Journal of Renewable Energy Research, 1(3), 75-82.
BeheshtiTabar, I., Keyhani, A., & Rafiee, S. (2010). Energy balance in Iran’s agronomy (1990–2006). Renewable and Sustainable Energy Reviews, 14, 849–855.
Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management, 46, 655–666.
Deike, S., Pallutt, B., & Christen, O. (2008). Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy, 28, 461–470.
Demircan, V., Ekinci, K., Keener, H.M., Akbolat, D., & Ekinci, C. (2006). Energy and economic analysis of sweet cherry production in Turkey: A case study from Isparta Province. Energy Conversion and Management, 47, 1761–1769.
Esengun, K., Erdal, G., Gunduz, O., & Erdal, H. (2007). An economic analysis and energy use in stake-tomato production in Tokat Province of Turkey. Renewable Energy, 32, 1873–8.
Food and Agriculture Organization (FAO). (2010). Agriculture production. Retrieved from .
Gundogmus, E. (2006). Energy use on organic farming: A comparative analysis on organic versus conventional apricot production on small holdings in turkey. Energy Conversion and Management, 47, 3351-3359.
Guzman, G.I., & Alonso, A.M. (2008).A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems, 98, 167–176.
Khojastehpour, M., Nikkhah, A., & Hashemabadi, D. (2015). A comparative study of energy use and greenhouse gas emissions of canola production. International Journal of Agricultural Management and Development, 5 (1), 51-58.
Khoshnevisan, B., Bolandnazar, E., Barak, S., Shamshirband, S.H., Maghsoudlou, H., Altameem, T., & Gani, A. (2015). A clustering model based on an evolutionary algorithm for better energy use in crop production. Stochastic Environmental Research and Risk Assessment, 29, 1921-1935.
Mardani, A. & Taghavifar, H. (2016). An overview on energy inputs and environmental emissions of grape production in West Azarbayjan of Iran. Renewable and Sustainable Energy Reviews, 54, 918–924.
Mehmet Firat, B., & Gokdogan, O. (2014). Energy input-output analysis in watermelon and melon production: A case study for Kirklareli Province. Anadolu Tarim Bilimleri Dergisi, 29(3), 217-224.
Moazzen, A.A. (2012). Annual Agricultural Statistics. Ministry of Agriculture of Iran Retrieved from <http://www.maj.ir>.
Mohammadi, A., Tabatabaeefar, A., Shahin, Sh., Rafiee, Sh., & Keyhani, A. (2008). Energy use and economic analysis of potato production in Iran a case study: Ardabil Province. Energy Conversion and Management, 49, 3566–3570.
Mohammadi-Barsari, A., Firouzi, S., & Aminpanah, H. (2016). Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran. Information Processing In Agriculture, 3, 69-75.
Moradi, R., RezvaniMoghaddam, P., & Mansoori, H. (2015). Energy use and economic analysis of seedy watermelon production for different irrigation systems in Iran. Energy Reports, 1, 36-42.
Moraditochaee, M., Azarpour, E., & Bozorgi, H.R. (2013). Estimate energy, energy balance and economic indices of watered farming watermelon production in North of Iran. Journal of Biodiversity and Environmental Sciences, 3(12), 59-66.
Munawar, A., Blevins, R.L., Frye, W.W., & Saul, M.R. (1990). Tillage and cover crop management for soil water conservation. Agronomy Journal, 82, 773-777.
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S.H., & Bagheri, I. (2014). Determination of efficient and inefficient units for watermelon production-a case study: Guilan Province of Iran. Journal of the Saudi Society of Agricultural Sciences, 15(2), 162-170.
Nabavi-Pelesaraei, A., Fatehi, F., & Mahmoudi, A. (2014). Prediction of yield and economic indices for tangerine production using artificial neural networks based on energy consumption. International Journal of Agronomy and Agricultural Research, 4(5), 57-64.
Nagy, C.N. (1999). Energy coefficients for agriculture inputs in western Canada. Retrieved from: http://www.csale.usask.ca/PDFDocuments/energyCoefficientsAg.pdf
Namdari, M. (2011). Energy use and cost analysis of watermelon production under different farming technologies in Iran. International Journal of Environmental Sciences, 1(6), 1144-1153.
Namdari, M., Mohammadi,A., & Ghasemi Mobtaker, H. (2011). Assessment of energy requirements and sensitivity analysis of inputs for watermelon production in Iran. International Journal of Plant, Animal and Environmental Sciences, 1, 102-110.
Nautiyal, S., Kaechele, H., Rao, K.S., Maikhuri, R.K., & Saxena, K.G. (2007). Energy and and economic analysis of traditional versus introduced crops cultivation in the mountains of the Indian Himalayas: A case study. Energy, 32, 2321–2335.
Omid, M., Ghojabeige, F., Ahmadi, H., & Delshad, M. (2011). Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis. Energy Convers Manage, 52(1), 153-162.
Prohens, J., & Nuez, F. (2008). Vegetables I. Handbook of Plant Breeding (Volume 1, pp. 381-418). New York, Springer science.
Rathke, G. W., & Diepenbrock, W. (2006). Energy balance of winter oilseed rape (Brassica napus L) cropping as related to nitrogen supply and preceding crop. European Journal of Agronomy, 24, 35–44.
Rohani, A., Abbaspour-Fard, M.H., & Abdolahpour, S. (2011). Prediction of tractor repair and maintenance costs using Artificial Neural Network. Expert Systems with Applications, 38(7), 8999–9007.
Rokach, L., & Oded M. (2005). Clustering methods. Data mining and knowledge discovery handbook, )pp. 321-352(, New York, Springer science.
Safa, M., & Tabatabaeefar, A. (2002). Energy consumption in wheat production in irrigated and dryland farming. Presented at International Agricultural Engineering Conference(28-30 Nov, p. 183), Wuxi, China.
Siemens, J.C., Bowers, W., & Holmes, R.G. (1999). Machinery management: How to select machinery to fit the real needs of farm managers. English, East Moline, Deere & Company John Deere.
Singh, J.M. (2002). On farm use pattern in different cropping systems in Haryana, India. Unpublished thesis, International Institute of Management, University of Flensburg, Germany.
Singh, G. (1999). Relationship between mechanization and productivity in various parts of India. Indian Society of Agricultural Engineers, 32, 16–18.
Soltanali, H., Emadi, B., Rohani, A., Khojastehpour, M., & Nikkhah, A. (2016).Optimization of energy consumption in milk production units through integration of DEA approach and sensitivity analysis. Iranian Journal of Applied Animal Science, 6 (1), 15-29.
Tiwari, G.N. (2003). Greenhouse technology for controlled environment. Pangbourne, England: Alpha Science International Ltd.
Topak, R., Suheri, S., & Acar, B. (2010). Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region. Energy, 35, 5464–5471.
Yaldiz, O., Ozturk, H.H., Zeren, Y. & Bascetincelik, A. (1993). Energy use in field crops of Turkey.International congress of Agricultural Machinery and Energy, October 12–14, Kusadasi, Turkey.
Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30, 145–155.