Seasonality and Forecasting of Monthly Broiler Price in Iran
محورهای موضوعی : Environmental policy and management
1 - استادیار، گروه مدیریت ، توسعه و آموزش کشاورزی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
کلید واژه: seasonality, Broiler price, periodic autoregressive (PAR), Seasonal unit root, seasonal integrated,
چکیده مقاله :
The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropriate method for modeling seasonal behavior of the broiler price. Results of seasonal unit root test indicated that the monthly prices of broiler follow a non-stationary stochastic seasonal process. Accordingly, the regression-based model is an appropriate modeling framework. While SARIMA is an alternative modeling approach, the RMSE of forecasting error suggested the superiority of the regression-based model over the SARIMA model. Therefore, the estimated parameters of the regression-based model can be used to predict the monthly prices of broiler in Iran.
هدف از مطالعه حاضر بررسی رفتار فصلی قیمت گوشت مرغ در ایران و پیش بینی مقادیر آتی می باشد. بدین منظور، از روشهای خودرگرسیونی دورهایی (PAR)، مدلهای جمعی فصلی و باکس-جنکینز فصلی (SARIMA) بهره گرفته شد. نتایج کار نشان داد رفتار فصلی قیمت گوشت مرغ از یک الگو دورهایی تبعیت نمینماید، لذا مدل PAR(q)، مدل مناسبی جهت الگوسازی رفتار فصلی قیمت گوشت مرغ در ایران نمیباشد. نتایج آزمون ریشه واحد فصلی موید آن است که قیمتهای ماهانه گوشت مرغ در ایران از یک فرآیند فصلی تصادفی ناایستا پیروی نموده و مدل پایه-رگرسیونی جمعی فصلی، چارچوب مناسبی برای پیش بینی مقادیر آتی آن فراهم مینماید. یافته مطالعه بیانگر این مطالب است اگرچه مدل SARIMA کاندیدی مناسبی برای این الگوسازی است ولی نتایج معیار RMSE از خطاهای پیش بینی در افق های زمانی متفاوت حکایت از مناسب بودن مدل پایه-رگرسیونی دارد، لذا پارامترهای برآورد شده این مدل می تواند برای پیش بینی مقادیر آتی قیمت ماهانه گوشت مرغ در ایران بکار گرفته شود.
1- Arnade, C., & Pich, D. (1998). Seasonality and unit roots: the demand for fruits. Agricultural Economics, 18 (1), 53-62.
2- Beaulieu, J. J., & Miron, J. A. (1993). Seasonal unit roots in aggregate U.S. data. Journal of Econometrics, 55 (1-2), 305-328.
3- Boswijk, H. P., & Franses, P. H. (1996). Unit roots in periodic auto regressions. Journal of Time Series, 17 (3), 221-245.
4- Brendstrup, B., Hylleberg, S., Nielsen, M., Skipper, L., & Stentoft, L. (2004). Seasonality in economic models. Macroeconomic Dynamics, 8 (03), 362–394.
5- Celements, M. P., & Hendry, D. F. (2004). A Companion to Economic Forecasting, USA, Blackwell Publishing.
6- Darne, O., & Diebolt, D. (2002). A note on seasonal unit root tests. Quality and Quantity, 36 (3), 305-310.
7- Enders, W. (2004). Applied econometrics time series, Second edition. USA, John Wiley & Sons, Inc.
8- Franses, P.H. (1991). Seasonality, non-stationary and the forecasting of monthly time Series. International Journal of Forecasting, 7 (2), 199-208.
9- Franses, P. H., & Hobijn, B. (1997). Critical values for unit root tests in seasonal time series. Journal of Applied Statistics, 24 (1), 25- 47.
10- Franses, P. H., & Paap, R. (2004), Periodic time series models, advanced texts in Econometrics, USA, Oxford University Press.
11- Franses, P. H., & Van Dijk, D. (2005). The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production. International Journal of Forecasting, 21 (1), 87– 102.
12- Ghahremanzade, M. (2008), Developing a revenue insurance model for Broiler industry of Iran. Unpublished dissertation, Department of Agricultural Economics, University of Tehran.
13- Gusstavsson, P., & Nordstrom, J. (2001). The impact of seasonal unit roots and vector ARMA modeling on forecasting monthly tourism flows. Tourism Economics, 7(2), 117-133.
14- Hossaini, S. S., Salami, H., & Nikoukar, A. (2008). Price transmission model for Iranian chicken industry. Iranian Journal of Agricultural Economics, 2(1), 1-22.
15- Hylleberg, S., Engle, R.F., Granger, C.W.J., & Yoo, B.S. (1990). Seasonal integration and cointegration. Journal of Econometrics, 44(1), 215-238.
16- Kim, H., & Moosa, I. (2001), Seasonal behavior of monthly international tourist flows: specification and implications for forecasting models. Tourism Economics, 7 (4), 381–396.
17- Kim, J. H., & Moosa, I. (2005). Forecasting international tourist flows to Australia: a comparison between the direct and indirect methods. Tourism Management, 26 (1), 69–78.
18- Koc, E., & Altinay, G. (2007). An analysis of seasonality in monthly per person tourist spending in Turkish inbound tourism from a market segmentation perspective. Tourism Management, 28 (1), 227–237.
19- Kulendran, N., & King, M. L. (1997). Forecasting international quarterly tourist flows using error correction and time-series models. International Journal of Forecasting, 13 (3), 319-327.
20- Kulendran, N., & Wong, K. F. (2005). Modeling Seasonality in Tourism Forecasting. Journal of Travel Research, 44 (2),163-170.
21- Lim, C., & McAleer, M. (2000). A Seasonal analysis of Asian tourist arrivals to Australia. Applied Economics, 32 (4), 499-509.
22- Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism Management, 23(4), 389-396.
23- Silvapulle, P. (2004). Testing for seasonal behavior of monthly stock returns: evidence from international markets. Journal of Business and Economics, 43(1 and 2), 93-106.
24- Tiffin, R., & Dawson, P. J. (2000). Structural breaks, cointegration and the farm-retail price spread for lamb. Applied Economics, 32 (10), 1281-1286.