بررسی اثر داروهای اگزالیپلاتین و پاکلی تاکسل برسلولهای سرطان کولون (HT29) و آنالیز بیان ژنهای آپوپتوزی کاسپاز3، کاسپاز9 وP53
محورهای موضوعی :
زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسم
هما محمودزاده
1
,
جواد بهارآرا
2
,
یگانه رضایی دلویی
3
1 - گروه زیست شناسی-دانشگاه ازاد اسلامی- واحد مشهد
2 - گروه زیست شناسی-دانشگاه ازاد اسلامی- واحد مشهد
3 - گروه زیست شناسی دانشگاه آزاد اسلامی واحد مشهد، مشهد، ایران
تاریخ دریافت : 1401/06/04
تاریخ پذیرش : 1401/12/02
تاریخ انتشار : 1402/05/01
کلید واژه:
سرطان کولون,
ژن p53,
اگزالیپلاتین,
پاکلیتاکسل,
ژن کاسپاز,
چکیده مقاله :
هدف: هدف بررسی اثرات سمیت سلولی پاکلیتاکسل و اگزالیپلاتین بر رده سلولی سرطان کولون (HT29) و آنالیز بیان ژنهای آپوپتوزی کاسپاز 3، 9و P53 میباشد. مواد و روش ها: ابتدا سمیت سلولی داروهای پاکلیتاکسل و اگزالی پلاتین و اثر توام آنها با غلظتهای مختلف بر رده سلولی HT29 با روش MTT بررسی شد و غلظت 50 درصد کشندگی (IC50) آن تعیین شد. میزان بیان ژنهای آپوپتوزی کاسپاز 3 و 9 نسبت به ژن مرجع GAPDH با استفاده از روش Real-Time PCR بررسی شد. هم چنین بررسی آپوپتوز سلول ها با استفاده از رنگ آمیزی Annexin V/PI و DAPI انجام شد. نتایج :پاکلیتاکسل و اگزالیپلاتین به ترتیب در غلظت های 25/3 و 00062/0 میکروگرم در میلیلیتر بیشترین اثر سمیت سلولی را دارد و میزان IC50 آن 00016/0 و µg/ml 5/12 محاسبه شد. تیمار همزمان داروها زندهمانی سلولها را کاهش داد . بیان ژنهای کاسپاز 3 و 9, P53 نسبت به ژن مرجع GAPDH در سلول های سرطان کولون تیمار شده نیز افزایش یافت. نتایج آزمون DAPI نشان دهنده ی قطعه قطعه شدن هستهها و آپوپتوز در گروههای تیماری همزمان بود. بررسی آپوپتوز با استفاده از Annexin V/PI نشان میدهد که 98 درصد سلولهای گروه شاهد سالم می باشند و درصد زیادی از سلولها تحت تیمار دچار آپوپتوز شده اند . نتیجه گیری: با توجه به سمیت سلولی و القای فرایند آپوپتوزیس در رده سلولی سرطان کولون توسط داروهای پاکلیتاکسل و اگزالی-پلاتین، میتوان نتیجهگیری کرد که این داروها گزینه مناسب جهت درمان سرطان کولون می باشند.
چکیده انگلیسی:
Aim: In this study the effects of paclitaxel and oxaliplatin on colon cancer cell line (HT29) and expression of apoptotic genes caspase 3, 9, and p53 were examined.Material and methods: Using the MTT method, the cytotoxicity of paclitaxel and oxaliplatin and synergic effect at different concentrations on the HT29 cell line was assessed. The IC50 of paclitaxel and oxaliplatin was determined.The expression level of caspase 3 and 9 was assessed using the Real-Time PCR method after the cells had been exposed to the IC50 concentration. Apoptosis of the cells was done using Annexin V/PI and DAPI staining.Results: The treatment of cells revealed that paclitaxel and oxaliplatin at concentrations of 3.25 and 0.00062 µg/ml , respectively, have the most cytotoxic effects and its IC50 value was determined to be 12.5 µg/ml and 0.00016 and treatment groups at concentrations of 3.25 and 0.00062 µg/ml , respectively, decreased the cell viability and its IC50 value was determined to be 12.5 µg/ml and0.00016µg/m. The expression level of caspase 3 and 9 P53 was also increased in the treated colon cancer cell line. DAPI staining showed apoptosis in the simultaneous treatment groups with. Using Annexin V/PI reveals that 98 percent of the cells in the control group are healthy and a considerable number of the cells in the treated groups have undergone apoptosis. Conclusion: Is. It is clear that paclitaxel and oxaliplatin are effective options for treating colon cancer given their cytotoxicity and stimulation of the apoptotic process in colon cancer cell lines.
منابع و مأخذ:
Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, Cook W, Wheeler T., Clark N R, Lachmann A, Zhang B, Hornbeck P, Ma'ayan A, Comb M. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. 2018; Sci Signal, 11(531). https://doi.org/10.1126/scisignal.aaq1087
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee S K. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer, 2018; 18(1), 99. https://doi.org/10.1186/s12885-018-3993-6
Levi M, Shalgi R, Brenner B, Perl G, Purim O, Amit L, Stemmer S M, Ben-Aharon I. The impact of oxaliplatin on the gonads: from bedside to the bench. Mol Hum Reprod, 2015; 21(12), 885-893. https://doi.org/10.1093/molehr/gav055
Feng L X, Li M, Liu Y J, Yang S M, Zhang N. Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci, 2014; 15(3), 4201-4220. https://doi.org/10.3390/ijms15034201
Sung H, Ferlay J, Siegel R L, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021; 71(3), 209-249. https://doi.org/10.3322/caac.21660
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol, 2019; 14(2), 89-103. https://doi.org/10.5114/pg.2018.81072
Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites E C. Cancer gene mutation frequencies for the U.S. population. Nature Communications, 2021; 12(1), 5961. https://doi.org/10.1038/s41467-021-26213-y
Beijers A J, Mols F, Vreugdenhil G. A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer, 2015; 22(7), 1999-2007. https://doi.org/10.1007/s00520-014-2242-z
Danciu C, Muntean D, Alexa E, Farcas C, Oprean C, Zupko I, Bor A, Minda D, Proks M, Buda V, Hancianu M, Cioanca O, Soica C, Popescu S, Dehelean C A. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules, 2018; 24(1). https://doi.org/10.3390/molecules24010013
Azman A S, Othman I, Fang C M, Chan K G, Goh B H, Lee L H. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian J Microbiol,2017; 57(2), 177-187. https://doi.org/10.1007/s12088-016-0627-z
Fujie Y, Yamamoto H, Ngan C Y, Takagi A, Hayashi T, Suzuki R, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M. Oxaliplatin, a potent inhibitor of survivin, enhances paclitaxel-induced apoptosis and mitotic catastrophe in colon cancer cells. Jpn J Clin Oncol, 2005; 35(8), 453-463. https://doi.org/10.1093/jjco/hyi130
Hopkins B D, Goncalves M D, Cantley L C. Obesity and Cancer Mechanisms: Cancer Metabolism. J Clin Oncol, 2016; 34(35), 4277-4283. https://doi.org/10.1200/jco.2016.67.9712
Kratz F, Müller I A, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008; 3(1), 20-53. https://doi.org/10.1002/cmdc.200700159
MacKenzie S H, Clark A C. Targeting cell death in tumors by activating caspases. Curr Cancer Drug Targets, 2008; 8(2), 98-109. https://doi.org/10.2174/156800908783769391
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516
Ahmed AA, Wang X, Lu Z, et al. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel. Cancer Res. 2011; 71(17): 5806–5817.
Oechsle K, Kollmannsberger C, Honecker F, Mayer F. Long-term survival after treatment with gemcitabine and oxaliplatin with and without paclitaxel plus secondary surgery in patients with cisplatin-refractory and/or multiply relapsed germ cell tumors. Eur Urol, 2011; 60(4):850-5. doi: 10.1016/j.eururo.2011.06.019.
Zhang Y, Li C, Qin Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J. E. V., (2021); 10 (5). https://doi.org/10.1002/jev2.12073
Shi M, Yang Z, Lu S. Oxaliplatin plus S-1 with intraperitoneal paclitaxel for the treatment of Chinese advanced gastric cancer with peritoneal metastases. BMC Cancer, 2021; 21, 1344. https://doi.org/10.1186/s12885-021-09027-5
Berlin JD, Venook A, Bergsland E, Rothenberg M, Lockhart AC, Rosen L. Colorectal Cancer. 2008;7(1): 44-7. doi: 10.3816/CCC.2008.n.006.
Cook L M, Hurst D R, Welch D R. Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol, 2011; 21(2), 113-122. https://doi.org/10.1016/j.semcancer.2010.12.005
Arnold J, David P. The P53 family: a subject collection from cold spring Harbor perspectives in biology laboratory press. Molecular cancer, 2010; 126:273-84.
Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family) J. Pharmacol. Exp. Ther. 2006; 19: 879–886. doi:10.1124/jpet.106.110346.
_||_
Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, Cook W, Wheeler T., Clark N R, Lachmann A, Zhang B, Hornbeck P, Ma'ayan A, Comb M. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. 2018; Sci Signal, 11(531). https://doi.org/10.1126/scisignal.aaq1087
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee S K. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer, 2018; 18(1), 99. https://doi.org/10.1186/s12885-018-3993-6
Levi M, Shalgi R, Brenner B, Perl G, Purim O, Amit L, Stemmer S M, Ben-Aharon I. The impact of oxaliplatin on the gonads: from bedside to the bench. Mol Hum Reprod, 2015; 21(12), 885-893. https://doi.org/10.1093/molehr/gav055
Feng L X, Li M, Liu Y J, Yang S M, Zhang N. Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci, 2014; 15(3), 4201-4220. https://doi.org/10.3390/ijms15034201
Sung H, Ferlay J, Siegel R L, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021; 71(3), 209-249. https://doi.org/10.3322/caac.21660
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol, 2019; 14(2), 89-103. https://doi.org/10.5114/pg.2018.81072
Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites E C. Cancer gene mutation frequencies for the U.S. population. Nature Communications, 2021; 12(1), 5961. https://doi.org/10.1038/s41467-021-26213-y
Beijers A J, Mols F, Vreugdenhil G. A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer, 2015; 22(7), 1999-2007. https://doi.org/10.1007/s00520-014-2242-z
Danciu C, Muntean D, Alexa E, Farcas C, Oprean C, Zupko I, Bor A, Minda D, Proks M, Buda V, Hancianu M, Cioanca O, Soica C, Popescu S, Dehelean C A. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules, 2018; 24(1). https://doi.org/10.3390/molecules24010013
Azman A S, Othman I, Fang C M, Chan K G, Goh B H, Lee L H. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian J Microbiol,2017; 57(2), 177-187. https://doi.org/10.1007/s12088-016-0627-z
Fujie Y, Yamamoto H, Ngan C Y, Takagi A, Hayashi T, Suzuki R, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M. Oxaliplatin, a potent inhibitor of survivin, enhances paclitaxel-induced apoptosis and mitotic catastrophe in colon cancer cells. Jpn J Clin Oncol, 2005; 35(8), 453-463. https://doi.org/10.1093/jjco/hyi130
Hopkins B D, Goncalves M D, Cantley L C. Obesity and Cancer Mechanisms: Cancer Metabolism. J Clin Oncol, 2016; 34(35), 4277-4283. https://doi.org/10.1200/jco.2016.67.9712
Kratz F, Müller I A, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008; 3(1), 20-53. https://doi.org/10.1002/cmdc.200700159
MacKenzie S H, Clark A C. Targeting cell death in tumors by activating caspases. Curr Cancer Drug Targets, 2008; 8(2), 98-109. https://doi.org/10.2174/156800908783769391
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516
Ahmed AA, Wang X, Lu Z, et al. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel. Cancer Res. 2011; 71(17): 5806–5817.
Oechsle K, Kollmannsberger C, Honecker F, Mayer F. Long-term survival after treatment with gemcitabine and oxaliplatin with and without paclitaxel plus secondary surgery in patients with cisplatin-refractory and/or multiply relapsed germ cell tumors. Eur Urol, 2011; 60(4):850-5. doi: 10.1016/j.eururo.2011.06.019.
Zhang Y, Li C, Qin Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J. E. V., (2021); 10 (5). https://doi.org/10.1002/jev2.12073
Shi M, Yang Z, Lu S. Oxaliplatin plus S-1 with intraperitoneal paclitaxel for the treatment of Chinese advanced gastric cancer with peritoneal metastases. BMC Cancer, 2021; 21, 1344. https://doi.org/10.1186/s12885-021-09027-5
Berlin JD, Venook A, Bergsland E, Rothenberg M, Lockhart AC, Rosen L. Colorectal Cancer. 2008;7(1): 44-7. doi: 10.3816/CCC.2008.n.006.
Cook L M, Hurst D R, Welch D R. Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol, 2011; 21(2), 113-122. https://doi.org/10.1016/j.semcancer.2010.12.005
Arnold J, David P. The P53 family: a subject collection from cold spring Harbor perspectives in biology laboratory press. Molecular cancer, 2010; 126:273-84.
Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family) J. Pharmacol. Exp. Ther. 2006; 19: 879–886. doi:10.1124/jpet.106.110346.