ساخت بسپار قالبمغناطیسی جدید با روش بسپارش نامیزهای پیکرینگ تثبیتشده با کیتوسان برای استخراج و پیشتغلیظ نیکل در نمونههای ماهی: بهینهسازی با طراحی باکس-بنکن و مطالعههای تعادلی، سینتیکی و ترمودینامیکی
محورهای موضوعی : شیمی تجزیهفرخنده بازیار 1 , علیرضا طاهری 2
1 - دانشجوی کارشناسی ارشد گروه شیمی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران.
2 - استادیار گروه شیمی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران
کلید واژه: یون نیکل (II), بسپارش نامیزهای پیکرینگ, بسپار قالبیونی مغناطیسی و طراحی بهینهسازی باکس-بنکن,
چکیده مقاله :
در پژوهش حاضر جاذب قالبمغناطیسی تهیهشده با روش بسپارش نامیزهای پیکرینگ بهعنوان جاذب گزینش پذیر مقادیر ناچیز نیکل II معرفی شده است. در ابتدا لیگاند کیلیت کننده 2-استیلبنزوفوران تیوسمی کاربازون و نانوذره های مغناطیسی آبگریز هسته-پوسته (Fe3O4@OA) تهیه و سپس بسپارش در حضور نسبت مناسب کمپلکس لیگاند-نیکل (II)، اتیلن گلیکول دیمتاکریلات، متاکریلیک اسید، آزوبیسایزوبوتیرونیتریل، ذره های کیتوسان و نانوذره های مغناطیسی آبگریز به ترتیب بهعنوان قالب یونی، شبکهساز، تکپار، آغازگر و عامل تثبیتکننده و حامل مغناطیسی نامیزه آب- روغن انجام گرفت. شناسایی لیگاند و بسپار در مراحل متفاوت با طیفهای فروسرخ تبدیل فوریه، ریزنگار نوری، میکروسکوپ الکترونی پویشی، پراکندگی انرژی پرتو ایکس، مغناطیسسنج نمونه، هم دما جذب-وا جذب نیتروژن، زاویه تماس ایستا آب و نسبت استوکیومتری لیگاند به فلز صورت پذیرفت. با روش طراحی آزمایش چندمتغیره (طرح باکس-بنکن)، شرایط بهینه آزمایش با زمان فراصوت 46 دقیقه، pH برابر با 78/7 و مقدار جاذب 85/78 میلیگرم تعیین شد. دادههای هم دما بسپار قالبیونی با مدل همدما لانگمویر همخوانی دارد که نشان دهنده جذب سطحی نامنظنم نیکل است. گستره دینامیکی خطی، حد تشخیص و انحراف استاندارد نسبی برای اندازهگیری یون های نیکل به ترتیب 01/0 تا mg/l 70، mg/l 004/0 و 21/3 % با طیفشناسی جذب اتمی، گزارش شده است. با بسپار تهیهشده جدید، اندازهگیری مقدار نیکل II در نمونه های ماهی از جمله ماهی قزل آلا، ماهی حلوا، ماهی تیلاپیا و ماهی تون بهطور موفقیت آمیزی بررسی شد.
In the present study, magnetic ion-imprinted polymer (MIIP) synthesized by Pickering emulsion polymerization has been introduced as a selective adsorbent for ultrasonic-assisted solid phase extraction and preconcentration of Nickel (II). At the first step 2-acetyl benzofuran thiosemicarbazone as a chelating agent and core-shell hydrophobic magnetic nanoparticles (Fe3O4@OA) were synthesized. The polymerization process was carried out in the presence of stoichiometric ratio of ligand-nickel ion, methacrylic acid, 2,2′azobisisobutyronitrile, chitosan nanoparticles and core-shell hydrophobic magnetic nanoparticles as the template, functional monomer, radical initiator, stabilizer agent, and water/oil emulsion magnetic carrier, respectively. The synthesized ligand and polymer were also characterized by FTIR analysis, Optical microscopy, SEM, EDX, vibrating sample magnetometer, XRD, Nitrogen adsorption–desorption isotherms, and the static water contact angles. The stoichiometric ratio of ligand to metal ion was investigated by the mole ratio method. The optimum conditions of the experiment was obtained by the multivariable design of experiments (Box-Behnken design) as 46 min for ultrasonic time, 7.87 for pH and 78.85 mg for adsorbent dosage. The selectivity, reusability, equilibrium, kinetic, and thermodynamic studies were also investigated in this research. Isotherm data of MIIPs well fitted the Langmuir model which indicated heterogeneous adsorption for Ni (II). Dynamic linear range, detection limit, and relative standard deviation (RSD) of the proposed method were reported as 0.001 –70 mg/l, 0.004 and 3.21%, respectively by atomic absorption technique. Trace determination of Ni (II) in some fish samples such as salmon, Tuna, Tilapia, butter fish was successfully carried out by the proposed method.
1] He, R.; Wang, Z.; Tan, L.; Zhong, Y.; Li, W.; Xing, D.; Wei, C.; Tang, Y.; Microporous and Mesoporous Materials 257, 212-221, 2018.
[2] Santos, L.D.; Santos, Q.O.D.; Moreno, I.; Novaes, C.G.; Santos, M.J.S.D; Bezerra, M.A.; Journal of the Brazilian Chemical Society 27, 745-752, 2015.
[3] Panneerselvam, P.; Morad, N; Tan, K.A.; Journal of Hazardous Materials 186, 160-168, 2011.
[4] Hadi, P.; Barford, J.; McKay, G.; Chemical Engineering Journal 228, 140-146, 2013.
[5] Demim, S.; Drouiche, N.; Aouabed, A.; Benayad, T.; Dendene-Badache, O.; Semsari, S.; Ecological Engineering 61(Part A), 426-435, 2013.
[6] Saraswat, R.; Talreja, N.; Deva, D.; Sankararamakrishnan, N.; Sharma, A.; Verma, N.; Chemical Engineering Journal 197, 250-260, 2012.
[7] Mohammadi, S.; Taheri, A.; Rezayati-zad, Z.; Progress in Chemical and Biochemical Research 1, 1-10, 2018.
[8] Diouf, A.; El Bari, N; Bouchikhi, B.; Talanta 209, 120577, 2020.
[9] Lee, M. H.; Thomas, J.L.; Liao, C.L.; Jurcevic, S.; Crnogorac-Jurcevic, T.; Lin, H.Y.; Separation and Purification Technology 192, 213-219, 2018.
[10] Lande, A.; Kroken, M.; Rabben, K.; Retterstol, L.; Am J Med Genet A 176, 175-180, 2018.
[11] Laatikainen, K.; Branger, C.; Coulomb, B.; Lenoble, V; Sainio, T.; Reactive and Functional Polymers 122, 1-8, 2018.
[12] Kong, X.J.; Zheng, C.; Lan, Y.H.; Chi, S.S.; Dong, Q.; Liu, H.L.; Peng, C.; Dong, L.Y.; Xu, L.; Wang, X.H.; Anal Bioanal Chem. 410, 247-257, 2018.
[13] Khan, S.; Hussain, S.; Wong, A.; Foguel, M.V.; Moreira Gonçalves, L.; Pividori Gurgo, M.I.; Taboada Sotomayor, M.D.P.; Reactive and Functional Polymers 122, 175-182, 2018.
[14] Azimi, M.; Ahmadi Golsefidi, M.; Varasteh Moradi, A.; Ebadii, M.; Zafar Mehrabian, R.; Journal of Analytical Methods in Chemistry 2020, 3646712, 2020.
[15] Kamari, K.; Taheri, A.; Journal of the Taiwan Institute of Chemical Engineers 86, 230-239, 2018.
[16] Gatabi, J.; Sarrafi, Y.; Lakouraj, M.M.; Taghavi, M.; Chemosphere 240, 124772, 2020.
[17] He, J.; Shang, H.; Zhang, X.; Sun, X.; Applied Surface Science 428, 110-117, 2018.
[18] Jalilian, R.; Taheri, A.; e-Polymers 18, 123-134, 2018.
[19] Zhou, Z.; Liu, X.; Zhang, M.; Jiao, J.; Zhang, H.; Du, J.; Zhang, B; Ren, Z.; Science of the Total Environment 699, 134334, 2020.
[20] Mishra, S.; Tripathi, A.; Journal of Environmental Chemical Engineering 8, 103656, 2020.
[21] Zengin, A.; Utku Badak, M.; Bilici, M.; Suludere, Z; Aktas, N.; Applied Surface Science 471, 168-175, 2019.
[22] Yu, R.; Zhou, H.; Li, M; Song, Q.; Journal of Electroanalytical Chemistry 832, 129-136, 2019.
[23] Yazdani, Z.; Yadegari, H.; Heli, H.; Anal Biochem 566, 116-125, 2019.
[24] Yang, C.; Ji, X.F.; Cao, W.Q.; Wang, J.; Zhang, Q.; Zhong, T.L.; Wang, Y.; Sensors and Actuators B: Chemical 282, 818-823, 2019.
[25] Colard, C.A.; Teixeira, R.F.; Bon, S.A.; Langmuir 26, 7915-7921, 2010.
[26] Qiao, X.; Zhou, J.; Binks, B.P.; Gong, X.; Sun, K.; Colloids and Surfaces A: Physicochemical and Engineering Aspects 412, 20-28, 2012.
[27] Cui, Z.G.; Cui, C.F.; Zhu, Y.; Binks, B.; Langmuir 28, 314-320, 2011.
[28] Teixeira, R.F.A.; McKenzie, H.S.; Boyd, A.A.; Bon, S.A.F.; Macromolecules 44, 7415-7422, 2011.
[29] Shah, B.R.; Li, Y.; Jin, W.; An, Y.; He, L.; Li, Z.; Xu, W.; Li, B.; Food Hydrocolloids 52, 369-377, 2016.
[30] Ou, H., Chen, Q., Pan, J., Zhang, Y., Huang, Y. and Qi, X.; J Hazard Mater 289, 28-37, 2015.
[31] Wei, Z.; Wang, C.; Zou, S.; Liu, H.; Tong, Z.; Polymer 53, 1229-1235, 2012.
[32] Lin, Z.; Zhang, Z.; Li, Y.; Deng, Y.; Chemical Engineering Journal 288, 305-311, 2016.
[33] Pan, J.; Qu, Q.; Cao, J.; Yan, D.; Liu, J.; Dai, X.; Yan, Y.; Chemical Engineering Journal 253, 138-147, 2014.
[34] Xu, C.,; Uddin, K.M.A.; Shen, X.; Jayawardena, H.S.N.; Yan, M.; Ye, L.; ACS applied materials & interfaces 5, 5208-5213, 2013.
[35] Davarani, S.S.H.; Rezayati-zad, Z.; Taheri, A.; Rahmatian, N.; Mater Sci Eng C Mater Biol Appl. 71, 572-583, 2017.
[36] Nezhadali, A.; Mojarrab, M.; Journal of Electroanalytical Chemistry 744, 85-94, 2015.
[37] Nezhadalia, A.; Sensors and Actuators B. 190, 829-837, 2014.
[38] Ahmadi, F.; Yawari, E.; Nikbakht, M.; J Chromatogr A 1338, 9-16, 2014.
[39] Kothari, R.; Sharma, B.; J. Chem. Chem. Sci. 1, 158-163, 2011.
[40] Chandra, S.; Gupta, L.K.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62, 1089-1094, 2005.
[41] Drozdov, A.S.; Ivanovski, V.; Avnir, D.; Vinogradov, V.V.; J Colloid Interface Sci. 468, 307-312, 2016.
[42] Zhang, L.; Li, L.; Dang, Z.M.; J Colloid Interface Sci. 463, 266-71, 2016.
[43] Zheng, W.; Chen, K.; Zhu, J.; Ji, L.; Separation and Purification Technology 116, 398-404. 2013.
[44] Gam‐Derouich, S.; Ngoc Nguyen, M., Madani, A.; Maouche, N.; Lang, P.; Perruchot, C.; Chehimi, M.M.; Surface and Interface Analysis 42, 1050-1056, 2010.
[45] Sharma, D.; Ansari, B.; Res. J. Chem. Sci. 1, 125-134. 2011.
[46] Yang, Y.; Wei, Z., Wang, C.; Tong, Z.; Chemical Communications 49, 7144-7146, 2013.
[47] Renkecz, T.; Mistlberger, G.N.; Pawlak, M.; Horváth, V.; Bakker, E.; ACS applied materials & interfaces. 5, 8537-8545, 2013.
[48] Tanev, P.T.; Vlaev, L.T.; Journal of Colloid and Interface Science 160, 110-116, 1993.
[49] Stalikas, C.; Fiamegos, Y.; Sakkas, V.; Albanis, T.; Journal of Chromatography A 1216. 175-189, 2009.
[50] Pizarro, C.; Pérez-del-Notario, N.; Sáenz-Mateo, A; González-Sáiz, J.; Talanta 128, 1-8, 2014.
1] He, R.; Wang, Z.; Tan, L.; Zhong, Y.; Li, W.; Xing, D.; Wei, C.; Tang, Y.; Microporous and Mesoporous Materials 257, 212-221, 2018.
[2] Santos, L.D.; Santos, Q.O.D.; Moreno, I.; Novaes, C.G.; Santos, M.J.S.D; Bezerra, M.A.; Journal of the Brazilian Chemical Society 27, 745-752, 2015.
[3] Panneerselvam, P.; Morad, N; Tan, K.A.; Journal of Hazardous Materials 186, 160-168, 2011.
[4] Hadi, P.; Barford, J.; McKay, G.; Chemical Engineering Journal 228, 140-146, 2013.
[5] Demim, S.; Drouiche, N.; Aouabed, A.; Benayad, T.; Dendene-Badache, O.; Semsari, S.; Ecological Engineering 61(Part A), 426-435, 2013.
[6] Saraswat, R.; Talreja, N.; Deva, D.; Sankararamakrishnan, N.; Sharma, A.; Verma, N.; Chemical Engineering Journal 197, 250-260, 2012.
[7] Mohammadi, S.; Taheri, A.; Rezayati-zad, Z.; Progress in Chemical and Biochemical Research 1, 1-10, 2018.
[8] Diouf, A.; El Bari, N; Bouchikhi, B.; Talanta 209, 120577, 2020.
[9] Lee, M. H.; Thomas, J.L.; Liao, C.L.; Jurcevic, S.; Crnogorac-Jurcevic, T.; Lin, H.Y.; Separation and Purification Technology 192, 213-219, 2018.
[10] Lande, A.; Kroken, M.; Rabben, K.; Retterstol, L.; Am J Med Genet A 176, 175-180, 2018.
[11] Laatikainen, K.; Branger, C.; Coulomb, B.; Lenoble, V; Sainio, T.; Reactive and Functional Polymers 122, 1-8, 2018.
[12] Kong, X.J.; Zheng, C.; Lan, Y.H.; Chi, S.S.; Dong, Q.; Liu, H.L.; Peng, C.; Dong, L.Y.; Xu, L.; Wang, X.H.; Anal Bioanal Chem. 410, 247-257, 2018.
[13] Khan, S.; Hussain, S.; Wong, A.; Foguel, M.V.; Moreira Gonçalves, L.; Pividori Gurgo, M.I.; Taboada Sotomayor, M.D.P.; Reactive and Functional Polymers 122, 175-182, 2018.
[14] Azimi, M.; Ahmadi Golsefidi, M.; Varasteh Moradi, A.; Ebadii, M.; Zafar Mehrabian, R.; Journal of Analytical Methods in Chemistry 2020, 3646712, 2020.
[15] Kamari, K.; Taheri, A.; Journal of the Taiwan Institute of Chemical Engineers 86, 230-239, 2018.
[16] Gatabi, J.; Sarrafi, Y.; Lakouraj, M.M.; Taghavi, M.; Chemosphere 240, 124772, 2020.
[17] He, J.; Shang, H.; Zhang, X.; Sun, X.; Applied Surface Science 428, 110-117, 2018.
[18] Jalilian, R.; Taheri, A.; e-Polymers 18, 123-134, 2018.
[19] Zhou, Z.; Liu, X.; Zhang, M.; Jiao, J.; Zhang, H.; Du, J.; Zhang, B; Ren, Z.; Science of the Total Environment 699, 134334, 2020.
[20] Mishra, S.; Tripathi, A.; Journal of Environmental Chemical Engineering 8, 103656, 2020.
[21] Zengin, A.; Utku Badak, M.; Bilici, M.; Suludere, Z; Aktas, N.; Applied Surface Science 471, 168-175, 2019.
[22] Yu, R.; Zhou, H.; Li, M; Song, Q.; Journal of Electroanalytical Chemistry 832, 129-136, 2019.
[23] Yazdani, Z.; Yadegari, H.; Heli, H.; Anal Biochem 566, 116-125, 2019.
[24] Yang, C.; Ji, X.F.; Cao, W.Q.; Wang, J.; Zhang, Q.; Zhong, T.L.; Wang, Y.; Sensors and Actuators B: Chemical 282, 818-823, 2019.
[25] Colard, C.A.; Teixeira, R.F.; Bon, S.A.; Langmuir 26, 7915-7921, 2010.
[26] Qiao, X.; Zhou, J.; Binks, B.P.; Gong, X.; Sun, K.; Colloids and Surfaces A: Physicochemical and Engineering Aspects 412, 20-28, 2012.
[27] Cui, Z.G.; Cui, C.F.; Zhu, Y.; Binks, B.; Langmuir 28, 314-320, 2011.
[28] Teixeira, R.F.A.; McKenzie, H.S.; Boyd, A.A.; Bon, S.A.F.; Macromolecules 44, 7415-7422, 2011.
[29] Shah, B.R.; Li, Y.; Jin, W.; An, Y.; He, L.; Li, Z.; Xu, W.; Li, B.; Food Hydrocolloids 52, 369-377, 2016.
[30] Ou, H., Chen, Q., Pan, J., Zhang, Y., Huang, Y. and Qi, X.; J Hazard Mater 289, 28-37, 2015.
[31] Wei, Z.; Wang, C.; Zou, S.; Liu, H.; Tong, Z.; Polymer 53, 1229-1235, 2012.
[32] Lin, Z.; Zhang, Z.; Li, Y.; Deng, Y.; Chemical Engineering Journal 288, 305-311, 2016.
[33] Pan, J.; Qu, Q.; Cao, J.; Yan, D.; Liu, J.; Dai, X.; Yan, Y.; Chemical Engineering Journal 253, 138-147, 2014.
[34] Xu, C.,; Uddin, K.M.A.; Shen, X.; Jayawardena, H.S.N.; Yan, M.; Ye, L.; ACS applied materials & interfaces 5, 5208-5213, 2013.
[35] Davarani, S.S.H.; Rezayati-zad, Z.; Taheri, A.; Rahmatian, N.; Mater Sci Eng C Mater Biol Appl. 71, 572-583, 2017.
[36] Nezhadali, A.; Mojarrab, M.; Journal of Electroanalytical Chemistry 744, 85-94, 2015.
[37] Nezhadalia, A.; Sensors and Actuators B. 190, 829-837, 2014.
[38] Ahmadi, F.; Yawari, E.; Nikbakht, M.; J Chromatogr A 1338, 9-16, 2014.
[39] Kothari, R.; Sharma, B.; J. Chem. Chem. Sci. 1, 158-163, 2011.
[40] Chandra, S.; Gupta, L.K.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62, 1089-1094, 2005.
[41] Drozdov, A.S.; Ivanovski, V.; Avnir, D.; Vinogradov, V.V.; J Colloid Interface Sci. 468, 307-312, 2016.
[42] Zhang, L.; Li, L.; Dang, Z.M.; J Colloid Interface Sci. 463, 266-71, 2016.
[43] Zheng, W.; Chen, K.; Zhu, J.; Ji, L.; Separation and Purification Technology 116, 398-404. 2013.
[44] Gam‐Derouich, S.; Ngoc Nguyen, M., Madani, A.; Maouche, N.; Lang, P.; Perruchot, C.; Chehimi, M.M.; Surface and Interface Analysis 42, 1050-1056, 2010.
[45] Sharma, D.; Ansari, B.; Res. J. Chem. Sci. 1, 125-134. 2011.
[46] Yang, Y.; Wei, Z., Wang, C.; Tong, Z.; Chemical Communications 49, 7144-7146, 2013.
[47] Renkecz, T.; Mistlberger, G.N.; Pawlak, M.; Horváth, V.; Bakker, E.; ACS applied materials & interfaces. 5, 8537-8545, 2013.
[48] Tanev, P.T.; Vlaev, L.T.; Journal of Colloid and Interface Science 160, 110-116, 1993.
[49] Stalikas, C.; Fiamegos, Y.; Sakkas, V.; Albanis, T.; Journal of Chromatography A 1216. 175-189, 2009.
[50] Pizarro, C.; Pérez-del-Notario, N.; Sáenz-Mateo, A; González-Sáiz, J.; Talanta 128, 1-8, 2014.