دستاوردهای اخیر در شیمی پیرولها: تهیه، ویژگی ها، و کاربردها
محورهای موضوعی : شیمی تجزیهزهرا صدری 1 , فرحناز کارگر بهبهانی 2
1 - دانشجوی دکتری شیمی آلی، گروه شیمی، واحدکرج، دانشگاه آزاد اسلامی، کرج، ایران.
2 - دانشیار شیمی آلی گروه شیمی، واحدکرج، دانشگاه آزاد اسلامی، کرج، ایران
کلید واژه: سنتز, کاتالیزگر, پیرول, آمینها, دی کتونها,
چکیده مقاله :
اثرهای زیان بار صنایع بر محیط زیست و سلامتی انسان ها باعث شده است که شیمیدان ها در پی یافتن روش های موثر و جدید به منظور حذف یا کاهش اثرهای منفی واکنش های شیمیایی و نیز کاهش انتشار مواد خطرناک در طی واکنش های شیمیایی باشند. با توجه به این موضوع در طی این مقاله مروری، روش های تهیه ترکیب های پیرول که یکی از مهم ترین ترکیب های ناجورحلقه در شیمی آلی هستند، ویژگ هی ا و کاربردهای آن ها موردبررسی قرار می گیرد. ترکیب های پیرول در شیمی دارویی و سنتز ترکیب های آلی از اهمیت بسزایی برخوردار هستند. این ترکیب ها نقش بسیار مهمی در طبیعت دارند. تاکنون روش های زیادی برای تهیه این ترکیب ها ارایه شده است که متداول ترین آن ها روش پاول- نور با کاتالیست های متفاوت است. در سال های اخیر تهیه درشت مولکول های زیستی حاوی پیرول و مواد دیگری مانند بسپارهای دارای پیرول، موردتوجه ویژه ای قرارگرفته اند. همه این پژوهش ها نیازمند روشی موثر با بازده بالا برای تهیه پیرول ها است که همچنان بهینه کردن عامل ها با وجود گذشت حدود 100 سال، موردتوجه پژوهشگران است.
Harmful effects of industry on the environment and human health have led chemists to find effective and new methods to eliminate or reduce the negative effects of chemical reactions and also reduce the release of hazardous substances during chemical reactions. With regard to this issue, in this review article, the synthetic methods of pyrrole compounds, their properties and applications, which are one of the most important heterocyclic compounds in organic chemistry, are reported. Pyrrole compounds are of great importance in medicinal chemistry and organic synthesis. These compounds play a very important role in nature. So far, many methods have been proposed for the synthesis of these compounds, the most common of which is the Paul-Noor method with various catalysts. In recent years, the synthesis of biomass-containing macromolecules and other materials, such as pyrrole-containing polymers, has received special attention. All this research requires an effective and high-efficiency method for the synthesis of pyrroles, which is still considered by researchers to optimize the parameters despite the passage of about 100 years.
[1] Keshavarz, N.; Behbahani, F.K.; Chemistry Africa 1, 113-117, 2018.
[2] Anvar, S.G.; Behbahani, F.K.; Eur. Chem. Bull. 8, 301-306, 2019.
[3] Karimirad, F.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[4] Daloee, T.S.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[5] Shekarchi, M.; Behbahani, F.K.; Russ. J. Org. Chem. 56, 894-900, 2020.
[6] Hasanzadeh, F.; Behbahani, F.K.; Russ J. Org. Chem. 56, 1070-1076, 2020.
[7] Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A. Chin. J. Chem. 26, 2203-2206, 2008.
[8] Rahmani, P.; Behbahani, F.K.; Inorg.Nano-Met. Chem. 47, 713-716, 2017.
[9] Naseri, M.; Behbahani, F.K.; JBARI. 247-253, 2015.
[10] Behbahani, F.K.; Lotfi, A.; Eur. Chem.Bull. 2, 694-697, 2013.
[11] Mojtahedi, M.M.; Abaee, M.S.; Heravi, M.M.; Behbahani, F.K.; Monatsh. Chem.138, 95-99, 2007.
[12] Oskooie, H.A.; Heravi, M.M.; Sadnia, A.; Jannati, F.; Behbahani, F.K.; Monatsh. Chem. 39, 27-29, 2008.
[13] Behbahani, F.K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N.; Monatsh. Chem 142, 901-906, 2011.
[14] Behbahani, F.K.; Naderi, M.; Russ. J. Gen. Chem. 86, 2804-2806, 2016.
[15] Najafi, E.; Behbahani, F.K.; Russ. J. Org. Chem. 53, 454-458, 2017.
[16] Joule, J.A.; Mills, B.K.; Heterocyclic Chem. 5, 355, 2009.
[17] Idhayadhulla, A.; Kumar, R.S.; Nasser, A.J.A.; Manilal, A.; Bull. Chem. Soc. Ethiop. 26, 429-435, 2012.
[18] Padron, J.M.; Tejedor, D.; Santos-Exposito, A.; Garcia-Tellado, F.; Martin, V.S.; J. Bioorg. Med. Chem. Lett.15, 2487-2490, 2005.
[19] Lehuede, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M.; Eur. J. Med. Chem. 34, 991-996, 1999.
[20] Furstner, A.; Angew. Chem. Int. Ed. 42, 3582-3603, 2003.
[21] Kumar, V.; Awasthi, A.; Salam, A.; Khan, T.J.; Org. Chem. 84, 11596-11603, 2019.
[22] Gholap, S.S.; Eur. J. Med. Chem. 110, 13–31, 2016.
[23] Estevez, V.; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633–4657, 2014.
[24] Battersby, A.R.; Nat. Prod. Rep. 17, 507–526, 2000.
[25] Arikawa, Y.; Nishida, H.; Kurasawa, O.; Hasuoka, A.; Hirase, K.; Inatomi, N.; Hori, Y.; Matsukawa, J.; Imanishi, A.; Kondo, M.; Tarui, N.; Hamada, T.; Takagi, T.; Takeuchi, T.; Kajino, M.; J. Med. Chem. 55, 4446 – 4456, 2012.
[26] Atar, A.B.; Jeong, Y.T.; Tetrahedron Lett. 54, 5624, 2013.
[27] Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G.; Bioorg. Med. Chem. Lett. 20, 6316-20, 2010.
[28] Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. J. Pharm. Chem. Chem. Sci. 1, 17-32, 2017.
[29] Harreus, A.L; Ulllmans Encyclopedia of Industrial Chemistry, 2000
[30] Estevez, V; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633-4657, 2014.
[31] Wang, X; Lane, B.S.; Sames. D. J.; Am. Chem. Soc. 127, 4996–4997, 2005.
[32] Matiychuk, V.S.; Martyak, R. L.; Obushak, N.D.; Ostapiuk, Y.V. Pidlypnyi N.I.; Chem. Heterocycl. Compnds. 40, 1218–1219, 2004.
[33] Park, S; Chun, M; Song, J; Kim, H.; Korean chem. Soc, 26, 575-578, 2005.
[34] Milgram, B.C; Eskildsen. K; Richter, S.M; Scheidt, W.R; Scheidt, K.A. J.; Org. Chem, 72, 3941-3944, 2007.
[35] Miles, K.C.; Mays, S.M.; Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc. 14, 181-190, 2009.
[36] Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc XIV, 181-190, 2009.
[37] Tu, X.C.; Fan, W.; Jiang, B.; Wang, S.L.; Tu, S.J. Tetrahedron 69, 6100-6107, 2013.
[38] Rao, H.S.P.; Jothilingam, S.; Tetrahedron Lett. 42, 6595-6597, 2001.
[39] Tsuji, Y.; Yokoyama, Y.; Huh, K.-T.; Watanabe, Y.; J. Organomet. Chem. 334, 157-167, 1987.
[40] Lian, Y.; Huber, T.; Hesp, K.D.; Bergman, Ellman, R.G.; Angew. Chem. Int. Ed. 52, 629 –633, 2013.
[41] Gao, C.; Xu, H.; Xiong, Y.; Chem. Soc. Rev., 46, 2799-2823, 2017.
[42] Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J.; Asian J. Chem, 4, 1712-1716, 2009.
[43] Stuart, D.R.; Alsabeh, P.; Kuhn, M.; Fagnou, K.; J. Am. Chem. Soc. 132, 18326-18339, 2010.
[44] Srimani, D.; Ben-David, Y.; Milstein, D.; Angew. Chem. Int. Ed. Engl. 2, 4012-4015, 2013.
[45] Saito, A.; Konishi, O.; Hanzawa, Y.; Org. Lett. 12, 372-374, 2010.
[46] Rakhtshah, J.; Shaabani, B.; Salehzadeh, S.; Moghadam, N.H.; Appl. Organomet. Chem. 33, 4033-4046, 2018.
[47] Rahmatpour, A.; Aalaie, J.; Heteroatom Chem. 22, 85-90, 2011.
[48] Kazemi, K.A.; Nasr-Isfahani, H.; Bamoniri, A. Mol. Divers. 21, 29-36, 2017.
[49] Dou, G.; Shi, C.; Shi, D.; J. Comb. Chem. 10, 810 –813, 2008.
[50] Ngwerume, S.; Camp, J.E.; J. Org. Chem. 75, 6271–6274, 2010.
[51] Zeng, J-C.; Xu, H.; Yu, F.; Zhang, Z.; Tetrahedron Lett. 58, 674-678, 2017.
[52] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[53] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[54] Danks, T.N.; Tetrahedron Lett. 40, 3957-3960, 1999.
[55] Cárdenas, R.A.V.; Leal, B.O.Q.; Reddy, A.; Bandyopadhyay, D.; Banik, B.K. Org. Med. Chem. Lett. 2, 24-30, 2012.
[56] Smith, K.M.; Goff, D.A.; J. Org. Chem. 51, 657-666, 1986.
[57] Hatamjafari, F.; Montazeri, N.; Turk. J. Chem. 33, 797-802, 2009.
[58] Vaitla, J.; Bayer, A.; Hopmann, K.H.; Angew. Chem. Int. Ed. 56, 1-6, 2017.
[59] Zhang, M.; Neumann, H.; Beller. M.; Angew. Chem. Int. Ed. 52, 597-601, 2013.
[60] Zhang, M.; Fang, X.; Neumann, H.; Beller, M.; J. Am. Chem. Soc. 31, 11384-11388, 2013.
[61] Reddy, L.M.; Chandrashekar, P.A.; Reddy, R.; Reddy, C.K.; Rus. J. Gen. Chem. 85, 155-161, 2015.
[62] Kucukdisli, M.; Ferenc, D.; Heinz, M.; Wiebe, C.; Opatz, T.; Beilstein J. Org. Chem. 10, 466-470, 2014.
[63] Bremner, W.S.; Organ, M.G.; J. Comb. Chem. 10, 142-147, 2008.
[64] Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T.; Tetrahedron Lett. 56, 859-865, 2015.
[65] Aydogan, F.; Basarir, M.; Yolacan, C.; Demir, A.S.; Tetrahedron 63, 9746-9750, 2007.
[66] Yang, Q.; Li, X.Y.; Wu, H.; Xiao, W.J.; Tetrahedron Lett. 47, 3893-3896, 2006.
[67] Dong, H.; Shen, M.; Redford, J.E.; Stokes, B.J.; Pumphrey, A.L.; Driver, T.G.; Org. Lett. 9, 5191-5194, 2007.
[68] Farney, E.P.; Yoon, T.P.; Angew. Chem. Int. Ed. 53, 793-797, 2014.
[69] Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E.; Tetrahedron Lett. 51, 3935-3937, 2010.
[70] Ono, N.; Hironaga, H.; Ono, K.; Kaneko, S.; Murashima, T.; Ueda, T.; Tsukamura, C.; Ogawa, T.; J. Chem. Soc. Perkin Trans.1. 5, 417-423, 1996.
[71] Larionov, O.V; Meijere, A.; Angew. Chem. Int. Ed. 44, 5664-5667, 2005.
[72] Bandyopadhyay, D.; Cruz, J.; Yadav, R.N.; Banik, B.K.; Molecules 17, 11570-11584, 2005.
[73] Behbahani, F.K.; Samadi. M.; J. Chil. Chem. Soc. 60, 2881- 2884, 2015.
[74] Arabpourian, K.; Behbahani, F.K.; Russ. J. Org. Chem. 55, 682–685, 2019.
[75] Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei. M.; Eur. J. Org. Chem., 5277–5288, 2005.
[76] Cheraghi, S.; Saberi, D.; Heydari, A.; Catal. Lett. 144, 1339–1343, 2014.
[77] Veisi, H, Mohammadi, P.; Gholami, J.; Appl. Organomet. Chem. 28, 868–873, 2014.
[78] Bandyopadhyay, D.; Mukherjee, S.; Granados, J.C.; Short, J.D.; Banik, B.K.; Eur. J. Med. Chem. 50, 209–215, 2012.
[79] Banik, B.K.; Samajdar, S.; Banik, I.; J. Org. Chem. 69, 213–216, 2004.
[80] Bhandari, N.; Gaonkar, S.L.; Chem. Heterocycl. Compd. 51, 320–323, 2015.
[81] Zhu, L.; Yu, Y.; Mao, Z.; Huang, X.; Org. Lett. 17, 30-33, 2015.
[82] Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E.F.; Org. Lett. 11, 4624-4627, 2009.
[83] Saito, A.; Konishi, T.; Hanzawa, Y.; Org. Lett. 12, 372–374, 2010.
[84] Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D.; Tumkevičius, S.; Monflier, E.; Hapiot, F.; Eur. J. Org. Chem. 2016, 31–35, 2016.
[85] Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X.; J. Org. Chem. 80, 11407-11416, 2015.
[86] Bunrit, A.; Sawadjoon, S.; Tupova, S.; Sjberg, P.J.R.; Samec, J.S.M.; J. Org. Chem. 81, 1450-1460, 2016.
[87] Cai, Y.; Jalan, A.; Kubosumi, A.R.; Org. Lett. 17, 488 -491, 2015.
[88] Kato, H.; Fujimaki, M.; Agric. Biol. Chem. 34, 1071–1077, 1970.
[89] Loader, C.; Andersonc, H.; Can. J. Chem. 59, 2673-2676, 1981.
[90] Eberlin, L.; Crboni, B.; Witing, A.; J. Org. Chem. 80, 6574-6583, 2015.
[91] Shekarchi, M.; Behbahani, F.K.; Lett. Org. Chem., In Press, 2021.
[92] Anari, M.S.; Behbahani, F.K.; Leb. Sci. J. 18, 219-225, 2017
[93] Chen, Z.; Shi, G.; Tang, W.; Jie Sun, J.; Wang, W.; Eur. J. Org. Chem. 2021, 951-955, 2021.
[94] Shasha, Li.; Zeng, G.; Xing, X.; Yang, Z.; Ma, F.; Li, B.; Cheng, W.; Zhang, J.; He, R.; New J. Chem. 45, 1834-1837, 2021.
[95] Louroubi, A.; Nayad, A.; Hasnaoui, A.; Idouhli, R.; Abouelfida, A.; Firdoussi, L.E.; Ali, M.A.; J. Chem., In Press, 2021.
[96] Paciorek, P.; Szklarzewicz, J.; Trzewik, B.; Cież, D.; Nitek, W.; Hodorowicz, M.; Jurowska, A.; J. Org. Chem., In Press, 2021.
_||_[1] Keshavarz, N.; Behbahani, F.K.; Chemistry Africa 1, 113-117, 2018.
[2] Anvar, S.G.; Behbahani, F.K.; Eur. Chem. Bull. 8, 301-306, 2019.
[3] Karimirad, F.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[4] Daloee, T.S.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[5] Shekarchi, M.; Behbahani, F.K.; Russ. J. Org. Chem. 56, 894-900, 2020.
[6] Hasanzadeh, F.; Behbahani, F.K.; Russ J. Org. Chem. 56, 1070-1076, 2020.
[7] Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A. Chin. J. Chem. 26, 2203-2206, 2008.
[8] Rahmani, P.; Behbahani, F.K.; Inorg.Nano-Met. Chem. 47, 713-716, 2017.
[9] Naseri, M.; Behbahani, F.K.; JBARI. 247-253, 2015.
[10] Behbahani, F.K.; Lotfi, A.; Eur. Chem.Bull. 2, 694-697, 2013.
[11] Mojtahedi, M.M.; Abaee, M.S.; Heravi, M.M.; Behbahani, F.K.; Monatsh. Chem.138, 95-99, 2007.
[12] Oskooie, H.A.; Heravi, M.M.; Sadnia, A.; Jannati, F.; Behbahani, F.K.; Monatsh. Chem. 39, 27-29, 2008.
[13] Behbahani, F.K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N.; Monatsh. Chem 142, 901-906, 2011.
[14] Behbahani, F.K.; Naderi, M.; Russ. J. Gen. Chem. 86, 2804-2806, 2016.
[15] Najafi, E.; Behbahani, F.K.; Russ. J. Org. Chem. 53, 454-458, 2017.
[16] Joule, J.A.; Mills, B.K.; Heterocyclic Chem. 5, 355, 2009.
[17] Idhayadhulla, A.; Kumar, R.S.; Nasser, A.J.A.; Manilal, A.; Bull. Chem. Soc. Ethiop. 26, 429-435, 2012.
[18] Padron, J.M.; Tejedor, D.; Santos-Exposito, A.; Garcia-Tellado, F.; Martin, V.S.; J. Bioorg. Med. Chem. Lett.15, 2487-2490, 2005.
[19] Lehuede, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M.; Eur. J. Med. Chem. 34, 991-996, 1999.
[20] Furstner, A.; Angew. Chem. Int. Ed. 42, 3582-3603, 2003.
[21] Kumar, V.; Awasthi, A.; Salam, A.; Khan, T.J.; Org. Chem. 84, 11596-11603, 2019.
[22] Gholap, S.S.; Eur. J. Med. Chem. 110, 13–31, 2016.
[23] Estevez, V.; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633–4657, 2014.
[24] Battersby, A.R.; Nat. Prod. Rep. 17, 507–526, 2000.
[25] Arikawa, Y.; Nishida, H.; Kurasawa, O.; Hasuoka, A.; Hirase, K.; Inatomi, N.; Hori, Y.; Matsukawa, J.; Imanishi, A.; Kondo, M.; Tarui, N.; Hamada, T.; Takagi, T.; Takeuchi, T.; Kajino, M.; J. Med. Chem. 55, 4446 – 4456, 2012.
[26] Atar, A.B.; Jeong, Y.T.; Tetrahedron Lett. 54, 5624, 2013.
[27] Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G.; Bioorg. Med. Chem. Lett. 20, 6316-20, 2010.
[28] Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. J. Pharm. Chem. Chem. Sci. 1, 17-32, 2017.
[29] Harreus, A.L; Ulllmans Encyclopedia of Industrial Chemistry, 2000
[30] Estevez, V; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633-4657, 2014.
[31] Wang, X; Lane, B.S.; Sames. D. J.; Am. Chem. Soc. 127, 4996–4997, 2005.
[32] Matiychuk, V.S.; Martyak, R. L.; Obushak, N.D.; Ostapiuk, Y.V. Pidlypnyi N.I.; Chem. Heterocycl. Compnds. 40, 1218–1219, 2004.
[33] Park, S; Chun, M; Song, J; Kim, H.; Korean chem. Soc, 26, 575-578, 2005.
[34] Milgram, B.C; Eskildsen. K; Richter, S.M; Scheidt, W.R; Scheidt, K.A. J.; Org. Chem, 72, 3941-3944, 2007.
[35] Miles, K.C.; Mays, S.M.; Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc. 14, 181-190, 2009.
[36] Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc XIV, 181-190, 2009.
[37] Tu, X.C.; Fan, W.; Jiang, B.; Wang, S.L.; Tu, S.J. Tetrahedron 69, 6100-6107, 2013.
[38] Rao, H.S.P.; Jothilingam, S.; Tetrahedron Lett. 42, 6595-6597, 2001.
[39] Tsuji, Y.; Yokoyama, Y.; Huh, K.-T.; Watanabe, Y.; J. Organomet. Chem. 334, 157-167, 1987.
[40] Lian, Y.; Huber, T.; Hesp, K.D.; Bergman, Ellman, R.G.; Angew. Chem. Int. Ed. 52, 629 –633, 2013.
[41] Gao, C.; Xu, H.; Xiong, Y.; Chem. Soc. Rev., 46, 2799-2823, 2017.
[42] Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J.; Asian J. Chem, 4, 1712-1716, 2009.
[43] Stuart, D.R.; Alsabeh, P.; Kuhn, M.; Fagnou, K.; J. Am. Chem. Soc. 132, 18326-18339, 2010.
[44] Srimani, D.; Ben-David, Y.; Milstein, D.; Angew. Chem. Int. Ed. Engl. 2, 4012-4015, 2013.
[45] Saito, A.; Konishi, O.; Hanzawa, Y.; Org. Lett. 12, 372-374, 2010.
[46] Rakhtshah, J.; Shaabani, B.; Salehzadeh, S.; Moghadam, N.H.; Appl. Organomet. Chem. 33, 4033-4046, 2018.
[47] Rahmatpour, A.; Aalaie, J.; Heteroatom Chem. 22, 85-90, 2011.
[48] Kazemi, K.A.; Nasr-Isfahani, H.; Bamoniri, A. Mol. Divers. 21, 29-36, 2017.
[49] Dou, G.; Shi, C.; Shi, D.; J. Comb. Chem. 10, 810 –813, 2008.
[50] Ngwerume, S.; Camp, J.E.; J. Org. Chem. 75, 6271–6274, 2010.
[51] Zeng, J-C.; Xu, H.; Yu, F.; Zhang, Z.; Tetrahedron Lett. 58, 674-678, 2017.
[52] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[53] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[54] Danks, T.N.; Tetrahedron Lett. 40, 3957-3960, 1999.
[55] Cárdenas, R.A.V.; Leal, B.O.Q.; Reddy, A.; Bandyopadhyay, D.; Banik, B.K. Org. Med. Chem. Lett. 2, 24-30, 2012.
[56] Smith, K.M.; Goff, D.A.; J. Org. Chem. 51, 657-666, 1986.
[57] Hatamjafari, F.; Montazeri, N.; Turk. J. Chem. 33, 797-802, 2009.
[58] Vaitla, J.; Bayer, A.; Hopmann, K.H.; Angew. Chem. Int. Ed. 56, 1-6, 2017.
[59] Zhang, M.; Neumann, H.; Beller. M.; Angew. Chem. Int. Ed. 52, 597-601, 2013.
[60] Zhang, M.; Fang, X.; Neumann, H.; Beller, M.; J. Am. Chem. Soc. 31, 11384-11388, 2013.
[61] Reddy, L.M.; Chandrashekar, P.A.; Reddy, R.; Reddy, C.K.; Rus. J. Gen. Chem. 85, 155-161, 2015.
[62] Kucukdisli, M.; Ferenc, D.; Heinz, M.; Wiebe, C.; Opatz, T.; Beilstein J. Org. Chem. 10, 466-470, 2014.
[63] Bremner, W.S.; Organ, M.G.; J. Comb. Chem. 10, 142-147, 2008.
[64] Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T.; Tetrahedron Lett. 56, 859-865, 2015.
[65] Aydogan, F.; Basarir, M.; Yolacan, C.; Demir, A.S.; Tetrahedron 63, 9746-9750, 2007.
[66] Yang, Q.; Li, X.Y.; Wu, H.; Xiao, W.J.; Tetrahedron Lett. 47, 3893-3896, 2006.
[67] Dong, H.; Shen, M.; Redford, J.E.; Stokes, B.J.; Pumphrey, A.L.; Driver, T.G.; Org. Lett. 9, 5191-5194, 2007.
[68] Farney, E.P.; Yoon, T.P.; Angew. Chem. Int. Ed. 53, 793-797, 2014.
[69] Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E.; Tetrahedron Lett. 51, 3935-3937, 2010.
[70] Ono, N.; Hironaga, H.; Ono, K.; Kaneko, S.; Murashima, T.; Ueda, T.; Tsukamura, C.; Ogawa, T.; J. Chem. Soc. Perkin Trans.1. 5, 417-423, 1996.
[71] Larionov, O.V; Meijere, A.; Angew. Chem. Int. Ed. 44, 5664-5667, 2005.
[72] Bandyopadhyay, D.; Cruz, J.; Yadav, R.N.; Banik, B.K.; Molecules 17, 11570-11584, 2005.
[73] Behbahani, F.K.; Samadi. M.; J. Chil. Chem. Soc. 60, 2881- 2884, 2015.
[74] Arabpourian, K.; Behbahani, F.K.; Russ. J. Org. Chem. 55, 682–685, 2019.
[75] Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei. M.; Eur. J. Org. Chem., 5277–5288, 2005.
[76] Cheraghi, S.; Saberi, D.; Heydari, A.; Catal. Lett. 144, 1339–1343, 2014.
[77] Veisi, H, Mohammadi, P.; Gholami, J.; Appl. Organomet. Chem. 28, 868–873, 2014.
[78] Bandyopadhyay, D.; Mukherjee, S.; Granados, J.C.; Short, J.D.; Banik, B.K.; Eur. J. Med. Chem. 50, 209–215, 2012.
[79] Banik, B.K.; Samajdar, S.; Banik, I.; J. Org. Chem. 69, 213–216, 2004.
[80] Bhandari, N.; Gaonkar, S.L.; Chem. Heterocycl. Compd. 51, 320–323, 2015.
[81] Zhu, L.; Yu, Y.; Mao, Z.; Huang, X.; Org. Lett. 17, 30-33, 2015.
[82] Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E.F.; Org. Lett. 11, 4624-4627, 2009.
[83] Saito, A.; Konishi, T.; Hanzawa, Y.; Org. Lett. 12, 372–374, 2010.
[84] Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D.; Tumkevičius, S.; Monflier, E.; Hapiot, F.; Eur. J. Org. Chem. 2016, 31–35, 2016.
[85] Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X.; J. Org. Chem. 80, 11407-11416, 2015.
[86] Bunrit, A.; Sawadjoon, S.; Tupova, S.; Sjberg, P.J.R.; Samec, J.S.M.; J. Org. Chem. 81, 1450-1460, 2016.
[87] Cai, Y.; Jalan, A.; Kubosumi, A.R.; Org. Lett. 17, 488 -491, 2015.
[88] Kato, H.; Fujimaki, M.; Agric. Biol. Chem. 34, 1071–1077, 1970.
[89] Loader, C.; Andersonc, H.; Can. J. Chem. 59, 2673-2676, 1981.
[90] Eberlin, L.; Crboni, B.; Witing, A.; J. Org. Chem. 80, 6574-6583, 2015.
[91] Shekarchi, M.; Behbahani, F.K.; Lett. Org. Chem., In Press, 2021.
[92] Anari, M.S.; Behbahani, F.K.; Leb. Sci. J. 18, 219-225, 2017
[93] Chen, Z.; Shi, G.; Tang, W.; Jie Sun, J.; Wang, W.; Eur. J. Org. Chem. 2021, 951-955, 2021.
[94] Shasha, Li.; Zeng, G.; Xing, X.; Yang, Z.; Ma, F.; Li, B.; Cheng, W.; Zhang, J.; He, R.; New J. Chem. 45, 1834-1837, 2021.
[95] Louroubi, A.; Nayad, A.; Hasnaoui, A.; Idouhli, R.; Abouelfida, A.; Firdoussi, L.E.; Ali, M.A.; J. Chem., In Press, 2021.
[96] Paciorek, P.; Szklarzewicz, J.; Trzewik, B.; Cież, D.; Nitek, W.; Hodorowicz, M.; Jurowska, A.; J. Org. Chem., In Press, 2021.