اثرات ضد میکروبی نانوذرات سولفید مس خارج سلولی سنتز شده از باسیلوس لیکنی فورمیس
محورهای موضوعی : زیست فناوری میکروبیمراحم آشنگرف 1 , مریم سهامی سلطانی 2
1 - دانشیار، دانشگاه کردستان، دانشکده علوم پایه، گروه علوم زیستی، سنندج
2 - کارشناس ارشد، دانشگاه کردستان، دانشکده علوم پایه، گروه علوم زیستی، سنندج
کلید واژه: اثر مهارکنندگی, باسیلوس لیکنی فورمیس, نانوسولفید مس, سنتز خارج سلولی,
چکیده مقاله :
سابقه و هدف: نانوذرات مس به خاطر ویژگیهای منحصر بهفرد کاتالیزگری، هدایت الکتریکی و نوری ویژه از جایگاه ویژهای برخوردار است. هدف از مطالعه حاضر، استفاده از پتانسیل سویههای باکتریایی آبزی بهعنوان کاتالیزگر برای احیای سولفات مس به نانوذرات سولفید مس و بررسی خواص ضد میکروبی آن می باشد.مواد و روش ها: نانوذرات سولفید مس تولید شده در مخلوط واکنش زیست تبدیلی، به وسیله آنالیزهای طیف سنجی، الکترومیکروگرافهای تهیه شده توسط میکروسکوپ الکترونی نگاره و بررسی دامنه پراکنش نانوذرات تعیین ویژگی شد. همچنین در این پژوهش، کارایی فعالیت ضد میکروبی نانوذرات سولفید مس تشکیل شده از طریق روش انتشار از دیسک بر آگار بررسی گردید.یافته ها: 105 سویه باکتری تحملپذیر نسبت به یون سمی مس بر اساس تکنیک غنیسازی جداسازی شدند. بر اساس نتایج بهدست آمده، تنها روماند کشت سویه Cu25 قادر به احیای خارج سلولی یونهای مس به نانوسولفید مس بود. سویه باکتری Cu25 بر اساس آزمون های فنوتیپی و مولکولی به عنوان باسیلوس لیکنی فورمیس مورد شناسایی قرار گرفت. در ادامه، سنتز خارج سلولی نانوذرات سولفید مس تولید شده مورد بررسی قرار گرفت. نتایج نشان داد، روماند سویه یاد شده پس از مواجهه با محلول سولفات مس (غلظت 7.5 میلیمولار)، میتواند به صورت خارج سلولی نانوذرات سولفید مس کروی با میانگین اندازه 21.5 نانومتر را پس از 24 ساعت گرماگذاری در دمای 25 درجه سلیسیوس تولید کند.نتیجه گیری: مطالعه اخیر نخستین گزارش سنتز خارج سلولی نانوذرات سولفید مس توسط باکتری باسیلوس لیکنی فورمیس است. همچنین نانوذرات زیستی سنتز شده علیه برخی سویه های باکتریایی و قارچی بیمارگر مطالعه شده اثر مهارکنندگی رشد را دارد.
Background & Objectives: Copper nanoparticles due to unique catalytic properties and electrical and optical conductivity are of great importance. This study was aimed to use the potential of aquatic bacteria as biocatalysts to reduce copper sulfate into copper sulfide nanoparticles (CuSNPs) and to assess its antimicrobial properties.Materials & Methods: The CuSNPs produced via bioconversion reaction have been characterized by spectroscopy analysis, electro-micrographs prepared by scanning electron microscopy (SEM) and particle size distribution histogram. The antimicrobial activity of CuSNPs against some bacteria and pathogenic fungi was also investigated by disc diffusion test.Results: 105 Cu-resistant bacterial strains have been isolated according to selective enrichment technique. Based on the results, the only culture supernatant of strain Cu25 was able to reduce copper sulfate into copper sulfide nanoparticles (CuSNPs), extracellular. The cu25 strain was identified as Bacillus licheniformis based on phenotypic and molecular analysis. Subsequently, the extracellular synthesis of CuSNPs was investigated. The results showed that the supernatant of B. licheniformis Cu25 following exposure to 7.5 mM copper sulfate solution and 24 h of incubation can produce spherical CuSNPs with the average diameter of 21.5 nm as extracellular.Conclusion: The current study is the first report on the extracellular synthesis of CuSNPs using B. licheniformis. Also, the produced biological nanoparticles have growth inhibitory effect against some pathogenic bacteria and fungi.
applications. J Nanomater. 2011; 2011: 1-25.
2. Su X, Zhao J, Bala H, Zhu Y, Gao Y, Ma S, Wang Z. Fast synthesis of stable cubic copper
nanocages in the aqueous phase. J Phys Chem C. 2007; 111(40): 14689-14693.
3. Dadgostar N, Ferdous S, and Henneke D. Colloidal synthesis of copper nanoparticles in a
two-phase liquid–liquid system. Mater Lett. 2010; 64(1): 45-48.
4. Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS. Biological synthesis of copper
nanoparticles using plant extract. Nanotechnol. 2011; 1: 371-374.
5. Raja M, Subha J, Ali FB, Ryu SH. Synthesis of copper nanoparticles by electroreduction
process. Mater Manuf Process. 2008; 23(8): 782-785.
6. Yus H. Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Process
Soc Jpn. 2001; 109(1269): 65-75.
7. Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble
metal nanoparticles. Phys Chem Chem Phys. 2009; 11(20): 3805-3821.
8. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001; 46(1): 1-184.
9. Lisiecki I, Filankembo A, Sack-Kongehl H, Weiss K, Pileni MP, Urban J. Structural
investigations of copper nanorods by high-resolution TEM. Phys Rev B. 2000; 61(7): 4968.
10. Varshney R, Bhadauria S, Gaur MS. A review: biological synthesis of silver and copper
nanoparticles. Nano Biomed Eng. 2012; 4(2): 99-106.
11. Pavani K.V, Srujana N, Preethi G, Swati T. Synthesis of copper nanoparticles by Aspergillus
species. Lett Appl Nanobiosci. 2013; 2: 110-113.
12. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi C, Reddy BVS,
Raju BDP. Green synthesis of silver nanoparticles using Ocimum leaf extract and their
characterization. Dig J Nanomater Biostruct. 2011; 6(1): 181-186.
13. Rai, M, Maliszewska I, Ingle A, Gupta I, Yadav A. Diversity of microbes in synthesis of metal
nanoparticles. In bio-nanoparticles: biosynthesis and sustainable biotechnology applications.
Singh, O. V. (ed). Hoboken, NJ: John Wiley & Sons. 2015; pp. 1-30.
14. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv
Colloid Interface Sci. 2010; 156(1): 1-13.
15. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio
M, Zambonin PG, Traversa E. Copper nanoparticle/polymer composites with antifungal and
bacteriostatic properties. Chem Mater. 2005; 17(21): 5255-5262.
16. Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R. Synthesis and characterization
of copper nanoparticles. Mater Lett. 2007; 61(25): 4711-4714.
17. Shantkriti S, Rani P. Biological synthesis of copper nanoparticles using Pseudomonas
fluorescens. Int J Curr Microbiol App Sci. 2014; 3: 374-383.
18. Washington JA. Dilution susceptibility test: Agar and macro-broth dilution procedures.
American Soc for Microbiol. Washington, DC (USA); 1980.
19. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J. A biomimetic approach towards
synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol. 2013; 97(2): 859-869.
20. aron inego . ai e an co ’s iagnos ic micro io og h e . he os
Company, St. Louis, MO; 1990.
21. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's manual of determinative
bacteriology, 9nd ed. Baltimore: Williams and Wilkins; 1994.
22. Collins CH, Patricia M, Lyne JM, Grange. Page 112 in Collins and dynes microbiological
methods, 7th Ed. Butterworth-Heinemann, UK; 1995.
23. Weis urg W arns e e ier ane J. ri osoma amp ifica ion or
phylogenetic study. J Bacteriol. 1991; 173: 697-703.
24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary
genetics analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729.
25. Tendencia EA. Disk Diffusion In: Laboratory manual of standardized methods for
antimicrobial tests for bacteria isolated from aquatic animals and environment. Tigbavan, Ibilo;
Aquaculture Dept, Southeast Asian Fisheries Development Centre. 2004; pp.13-29.
26. Hosseini MR, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M. Biologically synthesized
copper sulfide nanoparticles: production and characterization. Mater Sci Semicond Process.
2012; 15: 222-225.
27. Schaffie M, Hosseini MR. Biological process for synthesis of semiconductor copper sulfide
nanoparticle from mine wastewaters. J Environ Chem Eng. 2014; 2(1): 386-391.
28. Yadav S, Bajpai PK. Synthesis of copper sulfide nanoparticles: pH dependent phase
stabilization. Nano-Structures Nano-Objects. 2017; 10: 151-158.
29. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Novel strain of Bacillus
licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann Microbiol.
2012; 62(2): 553-558.
30. Dash H. R, Mangwani N, Chakraborty J, Kumari S, Das S. Marine bacteria: potential
candidates for enhanced bioremediation. Appl Microbiol Biotechnol. 2013; 97(2): 561-571.
31. Ghorbani HR, Mehr FP, Poor AK. Extracellular synthesis of copper nanoparticles using
culture supernatants of Salmonella typhimurium. Orient J Chem. 2015; 31: 527-529.
32. Salvadori MR, Lepre LF, Ando RA, Oller do Nascimento CA, Correa B. Biosynthesis and
uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal
mine in the Brazilian amazon region. PLoS ONE. 2013; 8(11): e80519.
_||_
applications. J Nanomater. 2011; 2011: 1-25.
2. Su X, Zhao J, Bala H, Zhu Y, Gao Y, Ma S, Wang Z. Fast synthesis of stable cubic copper
nanocages in the aqueous phase. J Phys Chem C. 2007; 111(40): 14689-14693.
3. Dadgostar N, Ferdous S, and Henneke D. Colloidal synthesis of copper nanoparticles in a
two-phase liquid–liquid system. Mater Lett. 2010; 64(1): 45-48.
4. Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS. Biological synthesis of copper
nanoparticles using plant extract. Nanotechnol. 2011; 1: 371-374.
5. Raja M, Subha J, Ali FB, Ryu SH. Synthesis of copper nanoparticles by electroreduction
process. Mater Manuf Process. 2008; 23(8): 782-785.
6. Yus H. Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Process
Soc Jpn. 2001; 109(1269): 65-75.
7. Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble
metal nanoparticles. Phys Chem Chem Phys. 2009; 11(20): 3805-3821.
8. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001; 46(1): 1-184.
9. Lisiecki I, Filankembo A, Sack-Kongehl H, Weiss K, Pileni MP, Urban J. Structural
investigations of copper nanorods by high-resolution TEM. Phys Rev B. 2000; 61(7): 4968.
10. Varshney R, Bhadauria S, Gaur MS. A review: biological synthesis of silver and copper
nanoparticles. Nano Biomed Eng. 2012; 4(2): 99-106.
11. Pavani K.V, Srujana N, Preethi G, Swati T. Synthesis of copper nanoparticles by Aspergillus
species. Lett Appl Nanobiosci. 2013; 2: 110-113.
12. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi C, Reddy BVS,
Raju BDP. Green synthesis of silver nanoparticles using Ocimum leaf extract and their
characterization. Dig J Nanomater Biostruct. 2011; 6(1): 181-186.
13. Rai, M, Maliszewska I, Ingle A, Gupta I, Yadav A. Diversity of microbes in synthesis of metal
nanoparticles. In bio-nanoparticles: biosynthesis and sustainable biotechnology applications.
Singh, O. V. (ed). Hoboken, NJ: John Wiley & Sons. 2015; pp. 1-30.
14. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv
Colloid Interface Sci. 2010; 156(1): 1-13.
15. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio
M, Zambonin PG, Traversa E. Copper nanoparticle/polymer composites with antifungal and
bacteriostatic properties. Chem Mater. 2005; 17(21): 5255-5262.
16. Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R. Synthesis and characterization
of copper nanoparticles. Mater Lett. 2007; 61(25): 4711-4714.
17. Shantkriti S, Rani P. Biological synthesis of copper nanoparticles using Pseudomonas
fluorescens. Int J Curr Microbiol App Sci. 2014; 3: 374-383.
18. Washington JA. Dilution susceptibility test: Agar and macro-broth dilution procedures.
American Soc for Microbiol. Washington, DC (USA); 1980.
19. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J. A biomimetic approach towards
synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol. 2013; 97(2): 859-869.
20. aron inego . ai e an co ’s iagnos ic micro io og h e . he os
Company, St. Louis, MO; 1990.
21. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's manual of determinative
bacteriology, 9nd ed. Baltimore: Williams and Wilkins; 1994.
22. Collins CH, Patricia M, Lyne JM, Grange. Page 112 in Collins and dynes microbiological
methods, 7th Ed. Butterworth-Heinemann, UK; 1995.
23. Weis urg W arns e e ier ane J. ri osoma amp ifica ion or
phylogenetic study. J Bacteriol. 1991; 173: 697-703.
24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary
genetics analysis version 6.0. Mol Biol Evol. 2013; 30: 2725-2729.
25. Tendencia EA. Disk Diffusion In: Laboratory manual of standardized methods for
antimicrobial tests for bacteria isolated from aquatic animals and environment. Tigbavan, Ibilo;
Aquaculture Dept, Southeast Asian Fisheries Development Centre. 2004; pp.13-29.
26. Hosseini MR, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M. Biologically synthesized
copper sulfide nanoparticles: production and characterization. Mater Sci Semicond Process.
2012; 15: 222-225.
27. Schaffie M, Hosseini MR. Biological process for synthesis of semiconductor copper sulfide
nanoparticle from mine wastewaters. J Environ Chem Eng. 2014; 2(1): 386-391.
28. Yadav S, Bajpai PK. Synthesis of copper sulfide nanoparticles: pH dependent phase
stabilization. Nano-Structures Nano-Objects. 2017; 10: 151-158.
29. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Novel strain of Bacillus
licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann Microbiol.
2012; 62(2): 553-558.
30. Dash H. R, Mangwani N, Chakraborty J, Kumari S, Das S. Marine bacteria: potential
candidates for enhanced bioremediation. Appl Microbiol Biotechnol. 2013; 97(2): 561-571.
31. Ghorbani HR, Mehr FP, Poor AK. Extracellular synthesis of copper nanoparticles using
culture supernatants of Salmonella typhimurium. Orient J Chem. 2015; 31: 527-529.
32. Salvadori MR, Lepre LF, Ando RA, Oller do Nascimento CA, Correa B. Biosynthesis and
uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal
mine in the Brazilian amazon region. PLoS ONE. 2013; 8(11): e80519.