تجزیه زیستی آلاینده های تیوفنی توسط کنسرسیوم میکروبی جدا شده از استان فارس
محورهای موضوعی : زیست فناوری میکروبیفاطمه داودی دهاقانی 1 , محمد برشان تشنیزی 2
1 - استادیار، گروه زیست شناسی، دانشکده علوم پایه، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران
2 - استادیار، گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران
کلید واژه: تجزیه زیستی, گازوئیل, تیوفن, کنسرسیوم میکروبی,
چکیده مقاله :
سابقه و هدف: امروزه خاک ها و آب های آلوده به ترکیبات نفتی، از معضلات محیط زیست هستند. بخش عمده ای از اثرات زیان بار نفت، ناشی از ترکیبات تیوفنی مانند دی بنزوتیوفن و مشتقات گوگردی دیگر است که شواهد روزافزونی مبنی بر سمیت و سرطان زایی و نیز پایداری نسبی آنها در طبیعت وجود دارد. هدف از این پژوهش، بررسی امکان تجزیه تعدادی از این آلاینده ها توسط مجموعه میکروارگانیسم هایی است که در سال های متمادی در مواجهه با گازوئیل گسترش یافته اند.مواد و روش ها: به منظور امکان سنجی مصرف دی بنزوتیوفن توسط سه کنسرسیوم میکروبی جدا شده، ابتدا محیط های رشدی با دی بنزوتیوفن به عنوان تنها منبع گوگردی ساخته شد و بیوماس میکروارگانیسم ها در ده روز دنبال گردید. در ادامه به منظور تخمین مسیر متابولیک تجزیه کننده این ترکیب، در محیط رشد کنسرسیوم برگزیده، 2-هیدروکسی بای فنیل ردیابی شد. همچنین اثر کنسرسیوم منتخب بر تیوفن، 2-متیل تیوفن و تیوفن 2-کربوکسیلیک اسید سنجش و مقایسه گردید.یافته ها: افزایش توده زیستی و حذف دی بنزوتیوفن در حضور یکی از کنسرسیوم های میکروبی و نیز ظاهر نشدن 2-هیدروکسی بای فنیل، نشان دهنده توانمندی آن کنسرسیوم در تجزیه این ترکیب، با مسیری غیر از S4 بود. این کنسرسیوم تیوفن و 2-متیل تیوفن را نیز مصرف نمود.نتیجه گیری: فعالیت و گستره سوبسترایی این کنسرسیوم در مقایسه با میکروارگانیسم های شناخته شده دیگر، آن را به عنوان بیوکاتالیستی ارزشمند در پاکسازی آلاینده های تیوفنی معرفی می کند.
Background & Objectives: Today, soils and waters polluted by petroleum compounds are major environmental problems. A major part of the harmful effects of oil is due to thiophenic compounds such as dibenzothiophene and other sulfur derivatives, with increasing evidence of toxicity, carcinogenicity and their relative sustainability in nature. The purpose of this study was to investigate the possibility of biodegradation of these pollutants by microorganisms that have spread over the years in the presence of gas oil.Materials & Methods: In order to study the feasibility of dibenzothiophene usage by isolated microbial consortia, firstly, appropriate growth medium with dibenzothiophene as the sole sulfur source was made and the biomass of the microorganisms was chased for 10 days. In order to estimate the metabolic degenerative pathway of this compound, 2-Hydroxybiphenyl was tracked in the selective consortium growth medium. Finally, the effect of the consortium on thiophene, 2-methylthiophene and thiophene-2-carboxylic acid was investigated, as well.Results: Increasing biomass and eliminating dibenzothiophene in the presence of a microbial consortium and the absence of 2-Hydroxybiphenyl showed the consortium's ability to degrade this compound, but with a biochemical pathway other than 4S. The consortium was able to take thiophene and 2-methylthiophene, as well.Conclusion: The biodegradation activity and the scope of the substrates in comparison with conventional microorganisms suggest this consortium as a valuable biocatalyst for the decontamination of thiophenic contaminants.
Adv Biochem Eng Biotechnol. 2014; 142: 123-146.
2. Olajire AA, Essien JP. Aerobic degradation of petroleum components by microbial consortia. J
Pet Environ Biotechnol 2014; 5(5): 195-216.
3. Subathra MK, Immanuel G, Suresh AH. Isolation and Identification of hydrocarbon degrading
bacteria from Ennore creek. Bioinformation. 2013; 9(3): 150-157.
4. Kropp KG, Fedorak PM. A review of the occurrence, toxicity, and biodegradation of condensed
thiophenes found in petroleum. Can J Microbiol. 1998; 44(7): 605-622.
5. Eastmond DA, Booth GM, Lee ML. Toxicity, accumulation and elimination of polycyclic
aromatic sulfur heterocycles in Daphnia magna. Arch Environ Contam Toxicol. 1984; 13:
105-111.
6. Asadirad MHA, Mazaheri Assadi M, Rashedi H, Nejadsattari T. Effects of indigenous
microbial consortium in crude oil degradation: a microcosm experiment. Int J Environ Res.
2016; 10(4): 491-498.
7. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an
overview. Biotechnol Res Int. 2011; 2011:941810. doi: 10.4061/2011/941810.
8. Papizadeh M, Ardakani MR, Motamedi H, Rasouli I, Zarei M. C–S targeted biodegradation of
dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl Biochem Biotechnol. 2011; 165
(3): 938-948.
9. Todescato D, Maass D, Mayer DA, Vladimir Oliveira J, de Oliveira D, Ulson de Souza S,
Ulson de Souza AA. Optimal production of a Rhodococcus erythropolis ATCC 4277
biocatalyst for biodesulfurization and biodenitrogenation applications. Appl Biochem
Biotechnol. 2017; 183(4): 1375-1389.
10. Tang H, Li Q, Wang Z, Yan D, Xing J. Simultaneous removal of thiophene and
dibenzothiophene by immobilized Pseudomonas delafieldii R-8 cells. Chinese J Chem Eng.
2012; 20(1): 47-51.
11. Gunam IB, Yaku Y Fau - Hirano M, Hirano M Fau, Yamamura K, Yamamura K Fau, Tomita
F, Tomita F Fau, Sone T, Sone T Fau, Asano K, Asano K. Biodesulfurization of alkylated forms
of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng.
2006; 101(4): 322-327.
12. Lidbury I, Krober E, Zhang Z, Zhu Y, Murrell JC, Chen Y, Schafer H. A mechanism for
bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine
organic sulfur cycle. Environ Microbiol. 2016; 18(8): 2754-2766.
13. Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S. Biodesulfurization of
hydrocarbons and diesel fuels by Rhodococcus sp strain P32C1. Biochem Eng J. 2001; 8(2):
151-156.
14. Davoodi-Dehaghani F, Vosoughi M, Ziaee AA. Biodesulfurization of dibenzothiophene by a
newly isolated Rhodococcus erythropolis strain. Bioresour Technol. 2010; 101(3): 1102-1105.
15. Zhang M, Hu T, Ren G, Zhu Z, Yang Y. Research on the effect of surfactants on the
biodesulfurization of coal. Energy Fuels. 2017; 31(8): 8116-8119.
16. Kara Ali M, Outili N, Ait Kaki A, Cherfia R, Benhassine S, Benaissa A, Kacem Chaouche N.
Optimization of Baker's yeast production on date extract using response surface methodology
(RSM). Food. 2017; 6(64): 1-17.
17. Singh Y. Photosynthetic activity, and lipid and hydrocarbon production by
alginateimmobilized cells of botryococcusin relation to growth phase. J Microbiol Biotechnol.
2003; 13(5): 687-691.
18. Bardania H, Raheb J Fau, Mohammad Beigi H, MohammadBeigi H Fau, Rasekh B, Rasekh B
Fau, Arpanaei A, Arpanaei A. Desulfurization activity and reusability of magnetite
nanoparticle-coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells.
Biotechnol Appl Biochem. 2013; 60(3): 323-329.
19. Janosch C, Remonsellez F, Sand W, Vera M. Sulfur Oxygenase reductase (Sor) in the
moderately thermoacidophilic leaching bacteria: studies in Sulfobacillus
thermosulfidooxidans and Acidithiobacillus caldus. Microorganisms. 2015; 3(4): 707-724.
20. Kobayashi M, Horiuchi K, Yoshikawa O, Hirasawa K, Ishii Y, Fujino K, Sugiyama H,
Maruhashi K. Kinetic analysis of microbial desulfurization of model and light gas oils
containing multiple alkyl dibenzothiophenes. Biosci Biotechnol Biochem. 2001; 65(2): 298-304.
21. Luo MF, Xing JM, Gou ZX, Li S, Liu HZ, Chen JY. Desulfurization of dibenzothiophene by
lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J.
2003;13(1):1-6.
22. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O. Increase in
desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci
Bioeng. 2000; 89(4): 361-366.
23. Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A. Analysis of
biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem
Eng J. 2006; 29(3): 169-173.
24. Hunt JM. Petroleum geochemistry and geology. 2nd ed. New York, W.H.Freeman & Co Ltd;
1979.
25. Piccoli S, Andreolli M Fau, Giorgetti A, Giorgetti A Fau, Zordan F, Zordan F Fau, Lampis S,
Lampis S Fau, Vallini G, Vallini G. Identification of aldolase and ferredoxin reductase
within the dbt operon of Burkholderia fungorum DBT1. J Basic Microbiol. 2014; 54(5):
464-469.
_||_
Adv Biochem Eng Biotechnol. 2014; 142: 123-146.
2. Olajire AA, Essien JP. Aerobic degradation of petroleum components by microbial consortia. J
Pet Environ Biotechnol 2014; 5(5): 195-216.
3. Subathra MK, Immanuel G, Suresh AH. Isolation and Identification of hydrocarbon degrading
bacteria from Ennore creek. Bioinformation. 2013; 9(3): 150-157.
4. Kropp KG, Fedorak PM. A review of the occurrence, toxicity, and biodegradation of condensed
thiophenes found in petroleum. Can J Microbiol. 1998; 44(7): 605-622.
5. Eastmond DA, Booth GM, Lee ML. Toxicity, accumulation and elimination of polycyclic
aromatic sulfur heterocycles in Daphnia magna. Arch Environ Contam Toxicol. 1984; 13:
105-111.
6. Asadirad MHA, Mazaheri Assadi M, Rashedi H, Nejadsattari T. Effects of indigenous
microbial consortium in crude oil degradation: a microcosm experiment. Int J Environ Res.
2016; 10(4): 491-498.
7. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an
overview. Biotechnol Res Int. 2011; 2011:941810. doi: 10.4061/2011/941810.
8. Papizadeh M, Ardakani MR, Motamedi H, Rasouli I, Zarei M. C–S targeted biodegradation of
dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl Biochem Biotechnol. 2011; 165
(3): 938-948.
9. Todescato D, Maass D, Mayer DA, Vladimir Oliveira J, de Oliveira D, Ulson de Souza S,
Ulson de Souza AA. Optimal production of a Rhodococcus erythropolis ATCC 4277
biocatalyst for biodesulfurization and biodenitrogenation applications. Appl Biochem
Biotechnol. 2017; 183(4): 1375-1389.
10. Tang H, Li Q, Wang Z, Yan D, Xing J. Simultaneous removal of thiophene and
dibenzothiophene by immobilized Pseudomonas delafieldii R-8 cells. Chinese J Chem Eng.
2012; 20(1): 47-51.
11. Gunam IB, Yaku Y Fau - Hirano M, Hirano M Fau, Yamamura K, Yamamura K Fau, Tomita
F, Tomita F Fau, Sone T, Sone T Fau, Asano K, Asano K. Biodesulfurization of alkylated forms
of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng.
2006; 101(4): 322-327.
12. Lidbury I, Krober E, Zhang Z, Zhu Y, Murrell JC, Chen Y, Schafer H. A mechanism for
bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine
organic sulfur cycle. Environ Microbiol. 2016; 18(8): 2754-2766.
13. Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S. Biodesulfurization of
hydrocarbons and diesel fuels by Rhodococcus sp strain P32C1. Biochem Eng J. 2001; 8(2):
151-156.
14. Davoodi-Dehaghani F, Vosoughi M, Ziaee AA. Biodesulfurization of dibenzothiophene by a
newly isolated Rhodococcus erythropolis strain. Bioresour Technol. 2010; 101(3): 1102-1105.
15. Zhang M, Hu T, Ren G, Zhu Z, Yang Y. Research on the effect of surfactants on the
biodesulfurization of coal. Energy Fuels. 2017; 31(8): 8116-8119.
16. Kara Ali M, Outili N, Ait Kaki A, Cherfia R, Benhassine S, Benaissa A, Kacem Chaouche N.
Optimization of Baker's yeast production on date extract using response surface methodology
(RSM). Food. 2017; 6(64): 1-17.
17. Singh Y. Photosynthetic activity, and lipid and hydrocarbon production by
alginateimmobilized cells of botryococcusin relation to growth phase. J Microbiol Biotechnol.
2003; 13(5): 687-691.
18. Bardania H, Raheb J Fau, Mohammad Beigi H, MohammadBeigi H Fau, Rasekh B, Rasekh B
Fau, Arpanaei A, Arpanaei A. Desulfurization activity and reusability of magnetite
nanoparticle-coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells.
Biotechnol Appl Biochem. 2013; 60(3): 323-329.
19. Janosch C, Remonsellez F, Sand W, Vera M. Sulfur Oxygenase reductase (Sor) in the
moderately thermoacidophilic leaching bacteria: studies in Sulfobacillus
thermosulfidooxidans and Acidithiobacillus caldus. Microorganisms. 2015; 3(4): 707-724.
20. Kobayashi M, Horiuchi K, Yoshikawa O, Hirasawa K, Ishii Y, Fujino K, Sugiyama H,
Maruhashi K. Kinetic analysis of microbial desulfurization of model and light gas oils
containing multiple alkyl dibenzothiophenes. Biosci Biotechnol Biochem. 2001; 65(2): 298-304.
21. Luo MF, Xing JM, Gou ZX, Li S, Liu HZ, Chen JY. Desulfurization of dibenzothiophene by
lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J.
2003;13(1):1-6.
22. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O. Increase in
desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci
Bioeng. 2000; 89(4): 361-366.
23. Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A. Analysis of
biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem
Eng J. 2006; 29(3): 169-173.
24. Hunt JM. Petroleum geochemistry and geology. 2nd ed. New York, W.H.Freeman & Co Ltd;
1979.
25. Piccoli S, Andreolli M Fau, Giorgetti A, Giorgetti A Fau, Zordan F, Zordan F Fau, Lampis S,
Lampis S Fau, Vallini G, Vallini G. Identification of aldolase and ferredoxin reductase
within the dbt operon of Burkholderia fungorum DBT1. J Basic Microbiol. 2014; 54(5):
464-469.