خطاپذیری و قطعیت ریاضیات در دیدگاه قیاسگرایی
محورهای موضوعی : پژوهشهای معرفت شناختیمحمود کوه گشت 1 , احمد شاهورانی 2 , محمود عبایی کوپانی 3
1 - گروه اموزشی الهیات و فلسفه ازاد تهران جنوب ایران
2 - گروه اموزشی ریاضی علوم وتحقیقات
3 - گروه فلسفه و الهیات دانشکده حقوق دانشگاه ازاد اسلامی واحد تهران جنوب
کلید واژه: ریاضیات, اثبات, خطاپذیری, قطعیت, قیاسگرایی,
چکیده مقاله :
خطاپذیری و قطعیت ریاضیات در دیدگاه قیاسگرایی چکیدهاین پژوهش نشان میدهد که خطاپذیری با تمام دگرگونیهای که ایجاد کرده است، تا حدودی قابل انعطاف است و امکان به وجود آوردن نسبتی میان آن با قطعیت مفاهیم ریاضی وجود دارد. این امکان از طریق احیای قیاسگرایی صورت میپذیرد. تمایز بین ریاضیات محض و کاربردی منجر به شکل غیر قابل بحثی از خطاپذیری ریاضی به ویژه در ریاضی محض میشود. علاوه بر این، این تمایز به خوبی با قیاسگرایی مطابقت دارد. زیرا با توجه نگرش انیشتین اثبات قطعیت ریاضی اگرچه در واقعیت امکانپذیر نیست اما در ریاضی محض ممکن است. در نتیجه قیاسگرایی با هدف اثبات قضایا و مفاهیم ریاضی میتواند برخی از خطاهای ممکن در ریاضیات را برطرف کند و اصلاحات به قیاسگرایی یکپارچه شده و ادعاهای خطاپذیری در اشکال غیرمناقشهآمیز خود بازگو میشوند.واژگان کلیدی: ریاضیات، خطاپذیری، قطعیت، قیاسگرایی، اثبات واژگان کلیدی: ریاضیات، خطاپذیری، قطعیت، قیاسگرایی، اثبات ,,واژگان کلیدی
Fallibility and Certainty of mathematics in the perspective of DeductivismAbstractThis research shows that fallibility, with all the transformations it has created, is flexible to some extent, and it is possible to establish a relationship between it and the certainty of mathematical concepts. This possibility is done through the revival of analogy. The distinction between pure and applied mathematics leads to an indisputable form of mathematical fallibility, especially in pure mathematics. Moreover, this distinction fits well with analogicalism. Because according to Einstein's attitude, although it is not possible to prove mathematical certainty in reality, it is possible in pure mathematics. As a result, analogism with the aim of proving theorems and mathematical concepts can eliminate some possible errors in mathematics, and corrections are integrated into analogism, and fallibility claims are recounted in their non-controversial forms.Key words: Mathematics, Fallibility, Certainty, Deductivism, ProofKey words: Mathematics, Fallibility, Certainty, Deductivism, Proof
زاگزبسکی، لیندا (1397). معرفتشناسی. ترجمه کاوه بهبهانی. تهران: نشر نی.
Benacerraf, P., & Putnam, H. (1983). Introduction. In P. Benacerraf and H. Putnam (Eds.), Philosophy of mathematics: Selected readings (pp.1-38). Cambridge: Cambridge University Press.
Brouwer, L. E. J. (1983). Consciousness, philosophy, and mathematics. In P. Benacerraf and H. Putnam (Eds.), Philosophy of mathematics: Selected readings (pp. 90-96). Cambridge: Cambridge University Press.
Canadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55-72.
Davis, P. (1972). "Fidelity in Mathematical Discourse: Is one and one really two?" American Mathematical Monthly, v. 79, pp. 252-263.
Davis, P. J. & Hersh, R. (1980). The Mathematical Experience, London: Penguin.
Descartes, R. (1985) Selected Writings vol. 1, trans. Cottingham et al. Cambridge: Cambridge UP.
Einstein, A. (1954). "Geometry and Experience" in Ideas and Opinions pp. 254 - 268, New York: The Modern Library.
Ernest, P. (1991) The Philosophy of Mathematics Education, London: Falmer Press.
Ernest, P. (1998). Mathematical knowledge and context. In A. Watson (Ed.), Situated cognition and the learning of mathematics (pp. 13-31). Oxford: Center for Mathematics Education Research.
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170.
Giaquinto, M. (2002). The search for certainty: A philosophical account of foundations of mathematics. Oxford: Clarendon Press.
Grattan-Guinness, I. (2000). The search for mathematical roots, 1870-1940: Logics, set theories and the foundations of mathematics from Cantor through Russell to Gödel. Princeton, N.J.: Princeton University Press.
Greiffenhagen, C. and W. Sharrock (2011). Does mathematics look certain in the front, but fallible in the back? Studies of Science 41 (6), 839‐866.
Haaparanta, L. (1992). The analogy theory of thinking. Dialectica, 46(2), 169-183.
Hersh, R. (1997). What is mathematics really? London: Jonathan Cape.
Heyting, A. (1983). The intuitionistic foundations of mathematics. In Benacerraf, P., & Putnam, H. (Eds.), Philosophy of mathematics (pp.52-61). Cambridge: Cambridge University Press.
Hilbert, D. (1983). On the infinite. In Benacerraf, P., & Putnam, H. (Eds.), Philosophy of mathematics (pp.183-201). Cambridge: Cambridge University Press.
Hume, D. (1993), An Enquiry Concerning Human Understanding, New York: Hackett.
Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104(3), 427.
Kitcher, P. (1984) The Nature of Mathematical Knowledge, New York, Oxford University Press.
Kline, M. (1980). Mathematics: The loss of certainty. New York: Oxford University Press.
Lakatos, I. (1976). Proofs and Refutations, Cambridge: Cambridge University Press.
Lakatos, I. (1978) Mathematics, Science and Epistemology (Philosphical Papers Vol 2), Cambridge, Cambridge University Press.
Musgrave, A. (1977). "Logicism Revisited," Brit. J. Phil. Sci., 28, pp. 99-128.
Ouvrier-Buffet C. (2015). A model of mathematicians’ approach to the defining processes. In Krainer K, Vondrová N. (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (CERME9) (pp. 2214–2220). Prague: Charles University in Prague, Faculty of Education and ERME.
Polanyi, M. (1998) Personal Knowledge, London, Routledge & Kegan Paul.
Putnam, H. (1975) Mathematics, Matter and Method (Philosophical Papers Vol. 1), Cambridge, Cambridge University Press.
Ramsey, F.P. (2013). The foundations of mathematics and other logical essays. London: Kegan Paul.
Rayo, A. (2005). Logicism reconsidered. In Shapiro, S. (Ed.), The Oxford handbook of philosophy of mathematics and logic (pp. 203-235). Oxford: Oxford University Press.
Resnik, M. (1980), Frege and the Philosophy of Mathematics, Ithaca: Cornell UP.
Rosenthall, P. (1996). The Nature of Mathematics and Teaching Paul Ernest, University of Exeter, UK.
Russell, B. (1969). The autobiography of Bertrand Russell, vol.3. London: Allen & Unwin.
Shapiro, S. (2007). The objectivity of mathematics, Synthese, 156(2), 337-381.
Van Es, A. (2001). “The evolution of mathematical concepts An essay on analogy in mathematics”
Wheeler, D. H. (2007). Notes on Mathematics in Primary Schools, Cambridge, Cambridge University Press.
Zach, R. (2006). Hilbert’s program then and now. In D. Jacquette (Ed.), Philosophy of logic, (pp. 411-447). Handbook of the philosophy of science, vol. 5. Amsterdam: Elsevier.