طراحی مدلی جهت پیش بینی قیمت قراردادهای آتی سکه طلا با استفاده از معادلات دیفرانسیل تصادفی
محورهای موضوعی :
مهندسی مالی
راحله باقری
1
,
محمدرضا ستایش
2
,
رضا رادفر
3
1 - گروه مدیریت صنعتی، واحدعلوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه حسابداری، واحد علوم تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مدیریت صنعتی، واحدعلوم تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران
تاریخ دریافت : 1399/04/09
تاریخ پذیرش : 1399/04/23
تاریخ انتشار : 1399/10/01
کلید واژه:
حرکت براونی,
معادلات دیفرانسیل تصادفی,
پیش بینی قیمت قراردادهای آتی سکه طلا,
فرایند تصادفی,
چکیده مقاله :
بازار سرمایه یکی از بازارهای مالی است که در یک اقتصاد پویا می تواند زمینه ساز رشد بلند مدت اقتصادی باشد. در این بازارها ابزارهای مالی متفاوتی مورد داد و ستد واقع می شوند. از جمله این ابزارهای مالی ، قراردادهای آتی است که ارزش خود را از یک دارایی پایه می گیرند. بدیهی است برای ورود به بازار قراردادهای آتی، شخص سرمایه گذار برای پوشش ریسک خود نیاز به پیش بینی روند آینده قیمت ها دارد. به همین منظور در پژوهش پیش روی به انتخاب معادله دیفرانسیل تصادفی مناسب جهت مدلسازی پیش بینی قیمت قراردادهای آتی سکه پرداخته شده است.برای این منظور پس از ارائه توضیحات لازم در مورد ضرورت استفاده از مدلهای تصادفی و در نتیجه اصول جدید تحت عنوان حسابان تصادفی ، به معرفی مهم ترین معادلات دیفرانسیل تصادفی کاربردی در علوم مالی شامل حرکت براونی هندسی، براونی هندسی با جمله جهش، هستون و مدل تبیین شده پرداخته شده است. سپس با رویکردی کاربردی و بر اساس توان هر مدل جهت پیش بینی قیمت قراردادهای آتی به وسیله شبیه سازی مونت کارلو، مدل مناسب انتخاب شده است.نتایج معیارهای نیکویی برازش در خصوص قدرت پیش بینی حاکی از برتری مدل تبیین شده در این قراردادها می باشد.
چکیده انگلیسی:
The capital market is one of the financial markets that in a dynamic economy can pave the way for long-term economic growth.Futures contracts that derive their values from an underlying asset, are included these financial instruments.To enter the futures market, the investor needs to anticipate future trends to cover his risk. For this purpose, the appropriate random differential equation has been selected to model the prediction of future coin contracts in the present study.Thus, after providing the necessary explanations about the necessity of using random models and as a result of new principles called random accounts, to introduce the most important stochastic differential equation in financial sciences including geometric Brownian, geometric Brownian with jump term, Heston and the explained model are discussed. Then, the appropriate model is selected, with a practical approach and based on the ability of each model to predict the price of futures contracts by assembling the Monte Carlo.The results of the fitness criteria regarding the predictive power indicate the superiority of the model explained in these contracts.
منابع و مأخذ:
فهرست منابع
جلال سید الدینی، فریدون رهنمای رودپشتی،1396، طلا به عنوان پناهگاه امن برای بورس اوراق بهادار تهران، رویکرد تغییر حالت، فصلنامه علمی پژوهشی دانش مالی تحلیل اوراق بهادار سال یازدهم، شماره چهل ام، زمستان 1397
حقیقت, جعفر و سجاد عبداله زاده، ۱۳۹۷، عوامل موثر بر بازده قیمت سهام، مسکن، سکه طلا و ارز در ایران کاربرد الگوهای VECM و DCC - GARCH، دومین کنفرانس بین المللی مدیریت و کسب و کار، تبریز، گروه مدیریت دانشگاه تبریز
دهدار, فرهاد و آرش خیرخواه، ۱۳۹۷، بررسی تحلیلی نیروهای جهت دهنده به بازار طلا و نقش عدم اطمینان، چهارمین کنفرانس بین المللی مدیریت،کارآفرینی و توسعه اقتصادی، تاکستان، موسسه آموزش عالی تاکستان
فرهادی, شیرین و ایوب باقری، ۱۳۹۷، پیش بینی قیمت طلا به کمک ترکیب سری های زمانی با استفاده از تکنیک یادگیری حداکثر، پنجمین کنفرانس بین المللی فناوری اطلاعات کامپیوتر مخابرات، تفلیس -کشور گرجستان، دبیرخانه دائمی کنفرانس
محمدی, احمد و زینب سواری، ۱۳۹۷، تاثیر قراردادهای آتی سکه بر نوسانات بازار نقدی این دارایی در ایران، فصلنامه پژوهشهای اقتصادی ایران 23 (74)
فرزانگان, الهام، ۱۳۹۷، استراتژی های پوشش ریسک قیمت سکه بهار آزادی: مقایسه بین رویکردهای ADCC، GO-GARCH و GARCH، فصلنامه پژوهشهای اقتصادی ایران 23 (75)
پویان فر, احمد و نگار افشاری، ۱۳۹۵، محاسبه وجه تضمین قرارداد آتی سکه بهار آزادی با استفاده از رویکرد ارزش در معرض ریسک و نظریه ارزش فرین، چهارمین کنفرانس ملی مدیریت، اقتصاد و حسابداری، تبریز، سازمان مدیریت صنعتی آذربایجان شرقی، دانشگاه تبریز
مهدی زاده, پیمان؛ علی حسین زاده کاشان و فریماه مخاطب رفیعی، ۱۳۹۵، بررسی نوسانات قیمت قراردادهای آتی سکه بر اساس تغییرات قیمت سایر دارایی ها و شاخص بورس تهران، کنفرانس بین المللی مهندسی صنایع و مدیریت، تهران، دبیرخانه دایمی کنفرانس
رستمی, علی؛ غلامرضا زمردیان و میثم علی محمدی، ۱۳۹۶، امکان سنجی پوشش ریسک نرخ ارز شرکت های صادرکننده و وارد کننده با استفاده از قرارداد آتی سکه طلا در بورس کالای ایران، مهندسی مالی و مدیریت اوراق بهادار 8 (31)
فلاح شمس, میرفیض؛ علیرضا ناصرپور؛ علی ثقفی و محمدتقی تقوی فرد، ۱۳۹۶، مقایسه مدل های ارزش در معرض خطر شبیه سازی تاریخی و GARCH در پیش بینی وجه تضمین قراردادهای آتی، دوفصلنامه اندیشه مدیریت راهبردی 11 (2)
طالب زاده بایی, سید مهدی، ۱۳۹۶، تاثیر پذیری قیمت تئوریک قراردادهای آتی از قیمت های معاملاتی آن در قراردادهای آتی سکه طلای بورس کالای ایران، مجله رهیافت های نوین مدیریت و فن آوری 2 (9)
فرزانگان, الهام، ۱۳۹۷، استراتژی های پوشش ریسک قیمت سکه بهار آزادی: مقایسه بین رویکردهای ADCC، GO-GARCH و GARCH، فصلنامه پژوهشهای اقتصادی ایران 23 (75)
Chakpitak, N., Rakpho, P., & Yamaka, W. (2019, January). Markov Switching Constant Conditional Correlation GARCH Models for Hedging on Gold and Crude Oil. In International Conference of the Thailand Econometrics Society (pp. 463-473). Springer, Cham.
Cortazar, G., Millard, C., Ortega, H., & Schwartz, E. S. (2019). Commodity price forecasts, futures prices, and pricing models. Management Science, 65(9), 4141-4155.
Coyle, C., Gogolin, F., & Kearney, F. (2019). Modelling gold futures: should the level of speculation inform our choice of variables The European Journal of Finance, 25(10), 966-977.
Dastranj, E., Fard, H. S., Abdolbaghi, A., & Hejazi, S. R. (2020). Power option pricing under the unstable conditions (Evidence of power option pricing under fractional Heston model in the Iran gold market). Physica A: Statistical Mechanics and its Applications, 537, 122690.
Fernandez-Perez, A., Fuertes, A. M., González-Fernández, M., & Miffre, J. (2019). Fear of Hazards in Commodity Futures Markets. Available at SSRN 3411117.
Garboden, P. M. (2020). Sources and Types of Big Data for Macroeconomic Forecasting. In Macroeconomic Forecasting in the Era of Big Data (pp. 3-23). Springer, Cham.
Horváth, L., Liu, Z., Rice, G., & Wang, S. (2019). A functional time series analysis of forward curves derived from commodity futures. International Journal of Forecasting.
Hua, Q., & Jiang, T. (2015). The prediction for London gold price: improved empirical mode decomposition. Applied Economics Letters, 22(17), 1404-1408.
Khan, S., & Bhardwaj, S. (2019). Time Series Forecasting of Gold Prices. In Emerging Trends in Expert Applications and Security (pp. 63-71). Springer, Singapore.
Lu, W., Geng, C., & Yu, D. (2019). A New Method for Futures Price Trends Forecasting Based on BPNN and Structuring Data. IEICE Transactions on Information and Systems, 102(9), 1882-1886.
Maréchal, L. (2019). A comprehensive look at commodity volatility forecasting.
Nguyen, D. K., & Walther, T. (2019). Modeling and forecasting commodity market volatility with long‐term economic and financial variables. Journal of Forecasting.
Oral, E., & Unal, G. (2019). Modeling and forecasting time series of precious metals: a new approach to multifractal data. Financial Innovation, 5(1), 3.
Rathnayaka, R. K. T., & Seneviratna, D. M. K. N. (2019). Taylor series approximation and unbiased GM (1, 1) based hybrid statistical approach for forecasting daily gold price demands. Grey Systems: Theory and Application, 9(1), 5-18.
Salisu, A. A., Ogbonna, A. E., & Adewuyi, A. (2020). Google trends and the predictability of precious metals. Resources Policy, 65, 101542.
Wang, Y., Cao, X., Sui, X., & Zhao, W. (2019). How do black swan events go global Evidence from US reserves effects on TOCOM gold futures prices. Finance Research Letters, 31.
Wei, Y., Liang, C., Li, Y., Zhang, X., & Wei, G. (2019). Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models. Finance Research Letters.
Weng, F., Chen, Y., Wang, Z., Hou, M., Luo, J., & Tian, Z.(2020) Gold price forecasting research based on an improved online extreme learning machine algorithm. Journal of Ambient Intelligence and Humanized Computing, 1-11.
Yamaka, W., & Maneejuk, P. (2020). Analyzing the Causality and Dependence between Gold Shocks and Asian Emerging Stock Markets: A Smooth Transition Copula Approach. Mathematics, 8(1), 120.
Yan, L., Irwin, S. H., & Sanders, D. R. (2019). Is the Supply Curve for Commodity Futures Contracts Upward Sloping?. Available at SSRN 3360787.
Zainal, N. A., & Mustaffa, Z. (2016, December). Developing a gold price predictive analysis using Grey Wolf Optimizer. In 2016 IEEE student conference on research and development (SCOReD) (pp. 1-6). IEEE.
Xiao, C., Xia, W., & Jiang, J. (2020). Stock price forecast based on combined model of ARI-MA-LS-SVM. Neural Computing and Applications, 1-10.
Lin, L., Jiang, Y., Xiao, H., & Zhou, Z. (2020). Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model. Physica A: Statistical Mechanics and its Applications, 123532.
Hafezi, R., & Akhavan, A. (2018). Forecasting gold price changes: Application of an equipped artificial neural network. AUT Journal of Modeling and Simulation, 50(1), 71-82.
Batten, J. A., Ciner, C., Kosedag, A., & Lucey, B. M. (2017). Is the price of gold to gold mining stocks asymmetric?. Economic Modelling, 60, 402-407.
Reboredo, J. C., & Ugolini, A. (2017). Quantile causality between gold commodity and gold stock prices. Resources Policy, 53, 56-63.
Liu, D., & Li, Z. (2017). Gold price forecasting and related influence factors analysis based on random forest. In Proceedings of the Tenth International Conference on Management Science and Engineering Management (pp. 711-723). Springer, Singapore.
Sihananto, A. N., & Bachtiar, F. A. (2017, November). Gold price movement forecasting using hybrid ES-FIS. In 2017 International Conference on Sustainable Information Engineering and Technology (SIET) (pp. 321-326). IEEE.
Fang, L., Chen, B., Yu, H., & Qian, Y. (2018). The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach. Journal of Futures Markets, 38(3), 413-422.
_||_
Chakpitak, N., Rakpho, P., & Yamaka, W. (2019, January). Markov Switching Constant Conditional Correlation GARCH Models for Hedging on Gold and Crude Oil. In International Conference of the Thailand Econometrics Society (pp. 463-473). Springer, Cham.
Cortazar, G., Millard, C., Ortega, H., & Schwartz, E. S. (2019). Commodity price forecasts, futures prices, and pricing models. Management Science, 65(9), 4141-4155.
Coyle, C., Gogolin, F., & Kearney, F. (2019). Modelling gold futures: should the level of speculation inform our choice of variables The European Journal of Finance, 25(10), 966-977.
Dastranj, E., Fard, H. S., Abdolbaghi, A., & Hejazi, S. R. (2020). Power option pricing under the unstable conditions (Evidence of power option pricing under fractional Heston model in the Iran gold market). Physica A: Statistical Mechanics and its Applications, 537, 122690.
Fernandez-Perez, A., Fuertes, A. M., González-Fernández, M., & Miffre, J. (2019). Fear of Hazards in Commodity Futures Markets. Available at SSRN 3411117.
Garboden, P. M. (2020). Sources and Types of Big Data for Macroeconomic Forecasting. In Macroeconomic Forecasting in the Era of Big Data (pp. 3-23). Springer, Cham.
Horváth, L., Liu, Z., Rice, G., & Wang, S. (2019). A functional time series analysis of forward curves derived from commodity futures. International Journal of Forecasting.
Hua, Q., & Jiang, T. (2015). The prediction for London gold price: improved empirical mode decomposition. Applied Economics Letters, 22(17), 1404-1408.
Khan, S., & Bhardwaj, S. (2019). Time Series Forecasting of Gold Prices. In Emerging Trends in Expert Applications and Security (pp. 63-71). Springer, Singapore.
Lu, W., Geng, C., & Yu, D. (2019). A New Method for Futures Price Trends Forecasting Based on BPNN and Structuring Data. IEICE Transactions on Information and Systems, 102(9), 1882-1886.
Maréchal, L. (2019). A comprehensive look at commodity volatility forecasting.
Nguyen, D. K., & Walther, T. (2019). Modeling and forecasting commodity market volatility with long‐term economic and financial variables. Journal of Forecasting.
Oral, E., & Unal, G. (2019). Modeling and forecasting time series of precious metals: a new approach to multifractal data. Financial Innovation, 5(1), 3.
Rathnayaka, R. K. T., & Seneviratna, D. M. K. N. (2019). Taylor series approximation and unbiased GM (1, 1) based hybrid statistical approach for forecasting daily gold price demands. Grey Systems: Theory and Application, 9(1), 5-18.
Salisu, A. A., Ogbonna, A. E., & Adewuyi, A. (2020). Google trends and the predictability of precious metals. Resources Policy, 65, 101542.
Wang, Y., Cao, X., Sui, X., & Zhao, W. (2019). How do black swan events go global Evidence from US reserves effects on TOCOM gold futures prices. Finance Research Letters, 31.
Wei, Y., Liang, C., Li, Y., Zhang, X., & Wei, G. (2019). Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models. Finance Research Letters.
Weng, F., Chen, Y., Wang, Z., Hou, M., Luo, J., & Tian, Z.(2020) Gold price forecasting research based on an improved online extreme learning machine algorithm. Journal of Ambient Intelligence and Humanized Computing, 1-11.
Yamaka, W., & Maneejuk, P. (2020). Analyzing the Causality and Dependence between Gold Shocks and Asian Emerging Stock Markets: A Smooth Transition Copula Approach. Mathematics, 8(1), 120.
Yan, L., Irwin, S. H., & Sanders, D. R. (2019). Is the Supply Curve for Commodity Futures Contracts Upward Sloping?. Available at SSRN 3360787.
Zainal, N. A., & Mustaffa, Z. (2016, December). Developing a gold price predictive analysis using Grey Wolf Optimizer. In 2016 IEEE student conference on research and development (SCOReD) (pp. 1-6). IEEE.
Xiao, C., Xia, W., & Jiang, J. (2020). Stock price forecast based on combined model of ARI-MA-LS-SVM. Neural Computing and Applications, 1-10.
Lin, L., Jiang, Y., Xiao, H., & Zhou, Z. (2020). Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model. Physica A: Statistical Mechanics and its Applications, 123532.
Hafezi, R., & Akhavan, A. (2018). Forecasting gold price changes: Application of an equipped artificial neural network. AUT Journal of Modeling and Simulation, 50(1), 71-82.
Batten, J. A., Ciner, C., Kosedag, A., & Lucey, B. M. (2017). Is the price of gold to gold mining stocks asymmetric?. Economic Modelling, 60, 402-407.
Reboredo, J. C., & Ugolini, A. (2017). Quantile causality between gold commodity and gold stock prices. Resources Policy, 53, 56-63.
Liu, D., & Li, Z. (2017). Gold price forecasting and related influence factors analysis based on random forest. In Proceedings of the Tenth International Conference on Management Science and Engineering Management (pp. 711-723). Springer, Singapore.
Sihananto, A. N., & Bachtiar, F. A. (2017, November). Gold price movement forecasting using hybrid ES-FIS. In 2017 International Conference on Sustainable Information Engineering and Technology (SIET) (pp. 321-326). IEEE.
Fang, L., Chen, B., Yu, H., & Qian, Y. (2018). The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach. Journal of Futures Markets, 38(3), 413-422.