بررسی عملیات تمپر بر خواص مکانیکی فولاد زنگ نزن سوپر مارتنزیتی13%Cr
محورهای موضوعی : عملیات حرارتیسعید جبارزارع 1 , ایمان خیراللهی حسین آبادی 2 , سید مسعود صهری 3 , رسول قاسمی 4 , محمد کویتی 5 , ابراهیم شکرانه 6
1 - کارشناس ارشد مهندسی مواد ، مرکزتحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد
2 - کارشناس ارشد مهندسی مواد، مرکزتحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد
3 - کارشناس ارشد مهندسی مواد، مرکزتحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد
4 - کارشناسی ارشد مهندسی مواد، دانشگاه صنعتی شریف
5 - کارشناس ارشد، فولاد آلیاژی اصفهان
6 - کارشناس مهندسی مواد، مرکزتحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد
کلید واژه: خواص مکانیکی, فولاد زنگ نزن سوپر مارتنزیتی, تمپر, آستنیت باقیمانده,
چکیده مقاله :
به منظور بررسی تأثیر عملیات تمپر بر تغییرات ریزساختاری وخواص مکانیکی فولاد زنگ نزن سوپر مارتنزیتی13%Cr، نمونهها در محدوده دمایی℃720-520و محدوده زمانی 10-3 ساعت تمپر، سپس سرد شدن در هوا انجام گرفته است. پس از عملیات حرارتی، ارزیابی خواص مکانیکی بوسیله آزمون های کشش و سختی وبررسی ریزساختار به روش میکروسکوپ نوری و میکروسکوپ الکترونی روبشی و همچنین ارزیابی میزان آستنیت باقیمانده، توسط پراش اشعهXبرروی نمونهها انجام گرفت. نتایج نشان داد خواص مکانیکی مطلوب با عملیات آستنیته در℃1050 به مدت 1 ساعت، کوئنچ در آب و عملیات تمپر در ℃600به مدت 3 ساعت و سرد شدن در هوا بدست میآید.
The samples wear tempered at 520-720 °C for 3-10 h and air cooling to investigate the effect of tempering treatment on microstructural evolution and mechanical properties of13%Cr SuperMartensitic Stainless Steel. After heat treatment, hardness and tensile strength tests were performed for investigation of mechanical properties. Moreover, optical microscopy and scanning electron microscopy (SEM) were performed for investigation of microstructure observations. X-Ray diffraction (XRD) was carried out to measure of austenite retained in the samples. The results indicated that the optimization of mechanical properties were achieved by austenitizing treatment at 1050 °C for 1 h and water quenching and then tempering treatment at 600 °C for 3 h with air cooling.The results indicated that the optimization of mechanical properties were achieved by austenitizing treatment at 1050 °C for 1 h and water quenching and then tempering treatment at 600 °C for 3 h with air cooling.The results indicated that the optimization of mechanical properties were achieved by austenitizing treatment at 1050 °C for 1 h and water quenching and then tempering treatment at 600 °C for 3 h with air cooling.
[1] C. Garica de Andres & L. F. Alvarez, “Optimization of Properties Obtained by Quenching Martensitic Stainless Steel X30-40Cr13 and X40-60CrMoV”, Journal ofMaterial Science, pp. 1264-1268, 1993.
[2] S. K. Bhabri, “IntergranularFracture in 13 wt% Chromium Martensitic Stainless Steel”, Journal of Material Science, pp. 1741-1746, 1986.
[3] م. هدا شهرضا، ع. شفیعی، ک. امینی، م. سلطانی و ع. نقیان، "تاثیرعملیات حرارتی برخواص مکانیکی وریزساختارفولادزنگ نزن مارتنزیتی 431AISI"، فصلنامه علمی پژوهشی فرایندهای نوین درمهندسی مواد، 52-45، سال ششم، شماره چهارم، زمستان 1391.
[4] م. خدیوی و ع. شفیعی، " تاثیرعملیات حرارتی برریزساختارخواص مکانیکی پوشش فولاد زنگ نزن ایجادشده به روش پاشش شعله ای"، فصلنامه علمی پژوهشی فرایندهای نوین درمهندسی مواد، 122-105، سال ششم، شماره سوم، پاییز 1391.
[5] Y. Y. Songa, D. H. Pingb, F. X. Yinb, X. Y. Li & Y. Y. Li, “Microstructural Evolution and LowTemperature Impact Toughness of a Fe–13%Cr–4%Ni–Mo Martensitic StainlessSteel”, Journal of Materials Science and Engineering, pp. 614-618, 2010.
[6] R. W. K. Honeycombe & H. K. D. H. Bhadeshia, “Steels-Microstructure and Properties”, Edward Arnold, London, 1995.
[7] D. H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya & K. Hono, “Microstructural Evolution in 13Cr–8Ni–2.5Mo–2Al Martensitic Precipitation-Hardened Stainless Steel”, Journal of Materials Science and Engineering, pp. 285-295, 2005.
[8] W. Uhlig H, Uhlig’sCorrosion Handbook, 2nd ed., John Wiley, 2000.
[9] W. J. Kaluba, T. Kaluba & R. Taillard, “The Austenitizing Behavior of High-Nitrogen Martensitic Stainless Steels”, Journal of Scripta Mater, pp. 1289-1293, 1999.
[10] X. P. Ma, L. J. Wang, B. Qin, C. M. Liu & S. V. Subramanian, “Effect of N on Microstructure and Mechanical Properties of 16Cr5Ni1MoMartensitic Stainless Steel”, Journal of Materials and Design, pp. 74-81, 2012.
[11] P. D. Bilmes, M. Solari & C. L. Llorente, “Characteristics and Effects of Austenite Resulting from Tempering of l3CrNiMo Martensitic Steel Weld Metals”, Journal of Materials Characterization, pp. 285-290, 2001.
[12] B. Qin, Z. Y. Wang & Q. S. Sun, “Effect of Tempering Temperature on Properties of 00Cr16Ni5Mo Stainless Steel”, Journal of Materials Characterization, pp. 1096-1100, 2008.
[13] D. S. Leem, Y. D. Lee & J. H. Jun, “Amount of Retained Austenite at Room Temperature after Reverse TransformationofMartensite to Austenite in an Fe13%Cr7%Ni-3%Si Martensitic Stainless Steel”, Journal of ScriptaMaterialia, pp. 767-772, 2001.
[14] M. Al Dawood, S. I. El Mahallawi & E. M. Abd El Azim, “Thermal Aging of 16Cr5Ni-lMo Stainless Steel Part 1: Microstructural Analysis”, Journal of Mater SciTechnol, pp. 363-370, 2004.
[15] K. P. Balan, A. Venugopal Reddy & D. S. Sarma, “Austenite Precipitation during Tempering in 16Cr2Ni Martensitic Stainless Steels”, Journal of ScriptaMaterialia, pp. 901-905, 1998.
[16] NaseryIsfahany, H. Saghafian & G. Borhani, “The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel”, Journal of Alloys and Compounds, pp. 3931-3936, 2011.
[17] J. Wen, Zh. Kun-yu, Y. Dong, L. Jun, L. Zhi-dong & S. Jie, “Effect of Heat Treatment on Reversed Austenite in Cr15 Martensitic Stainless Steel”, Journal of iron and steel research, pp. 61-65, 2013.