بررسی دمای واجذب هیدروژن در نانوکامپوزیت (Ti, Mn, V, Fe) MgH2 – 10wt% تولید شده به روش آلیاژسازی مکانیکی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدحسین محمدی 1 , سید جمال حسینی پور 2 , محمد رجبی 3
1 - کارشناس ارشد، مهندسی مواد، دانشگاه صنعتی بابل، بابل، ایران
2 - دانشیار، گروه مهندسی مواد، دانشگاه صنعتی بابل، بابل، ایران
3 - دانشگاه صنعتی نوشیروانی بابل
کلید واژه: آلیاژسازی مکانیکی, هیدرید منیزیم, دمای واجذب هیدروژن, افزودنی پایه تیتانیم,
چکیده مقاله :
منیزیم هیدرید (MgH2) به دلیل ظرفیت نگهداری هیدروژن (6/7درصد وزنی)، هزینه پایین و وزن سبک به عنوان یک ماده جذاب در ذخیره سازی هیدروژن شناخته می شود. با این وجود، دمای واجذب بالا و واکنش پذیری بالای آن با اکسیژن کاربرد آن را با محدودیت هایی مواجه می سازد. در سال های اخیر، تلاش های بسیاری برای کاهش دمای واجذب هیدریدهای پایه منیزیم صورت گرفته است. این تلاش ها شامل تغییر ریزساختار هیدرید به وسیله آلیاژسازی مکانیکی و استفاده از کاتالیست مناسب است. در این تحقیق، عناصر V ,Mn ,Ti و Fe به دو صورت مخلوط پودری و پودر پیشآلیاژ به منیزیم هیدرید افزوده شدند و پس از 30 ساعت آلیاژسازی مکانیکی، خواص نانوکامیپوزیت های حاصل توسط تفرق اشعه ایکس، میکروسکوپ الکترونی روبشی و آنالیز حرارتی بررسی گردید. نتایج نشان داد که افزودن پیش آلیاژ به هیدرید منیزیم و 30 ساعت آلیاژسازی مکانیکی مخلوط حاصل در بهبود خواص دفع هیدروژن موثرتر است.
Magnesium hydride is one of the attractive hydrogen storage materials because of its hydrogen storage capacity (7.6 wt %), low cost and light weight. However, high hydrogen desorption temperature and a high reactivity toward oxygen limit the use of MgH2 in practical applications. Many efforts have focused on Mg-based hydrides in recent years to reduce the desorption temperature. These can be accomplished to some extent by changing the microstructure of the hydride by mechanical alloying and also by using proper catalysts. In this work, Ti, Mn, V and Fe elements were added to MgH2 either in the form of powder mixture or prealloyed powder and after 30 h mechanical alloying, the properties of obtained nanocomposites were investigated by X-ray diffractometery, scanning electron microscopy and thermal analysis. The results showed that the addition of prealloyed powder to MgH2 and 30 h mechanical alloying of powder mixture is more effective in dehydrogenation properties.
[1] S. Ullmann, “Encyclopedia of Industrial Chemistry”, Sixth Edition, WILEY-VCH, 2002.
[2] D. A. J. Rand & R. M. Dell, “Hydrogen Energy”, Challenges and Prospects, 2007.
[3] م. ا. شافعی، س. ج. حسینی پور و م. رجبی، ”اثر افزودن زیرکونیم بر ریزساختار و سختی آلیاژ Al-6Zn-2.5Mg-1.5Cu تولیدی به روش آلیاژسازی مکانیکی“، فرایندهای نوین در مهندسی مواد، شماره 4، سال 9، صفحه 2، زمستان، 1394.
[4] د. داودی، ا. ح. امامی و ع. سعیدی،” تولید و بررسی خواص مکانیکی پودر نانو کامپوزیت آلومینیوم 7014 / آلومینا به روش آلیاژسازی مکانیکی“، فرایندهای نوین در مهندسی مواد، شماره 4، سال 9، صفحه 2، زمستان، 1394.
[5] W. Klose & V. Stuke, “Investigation of the thermodynamic equilibrium in the hydrogen-magnesium-magnesium hydride system”, International Journal of Hydrogen Energy, Vol. 20, pp. 309-316, 1999.
[6] H. Gasan, N. Aydinbeyli, O. N. Celik & Y. M. Yaman, “The dependence of the hydrogen desorption temperature of MgH2 on its structural and morphological characteristics”, Journal of Alloys and Compounds, Vol. 487, pp. 724–729, 2009.
[7] G. Liang, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2 –Tm (Tm=Ti, V, Mn, Fe and Ni) systems”, Journal of Alloys and Compounds, Vol. 292, pp. 247–252, 1999.
[8] N. Mahmoudi, A. Kaflou & A. Simchi, “Hydrogen desorption properties of MgH2–TiCr1.2Fe0.6 nanocomposite prepared by high-energy mechanical alloying”, Journal of Power Sources, Vol. 196, pp. 4604–4608, 2011.
[9] D. W. Zhou, J. Zhang, P. Peng & J. S Liu, “Alloying effects on the energy and electronic structures of vanadium hydrides”, Mater. Sic. Poland, Vol. 25, Pp. 947, 2007.
[10] R. A. Varin, T. Czujko & Z. Wronski, “Particle size, grain size and MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride (MgH2) processed by controlled mechanical milling”, Nanotechnology, Vol. 17, pp. 3856–65, 2006.
[11] B. Bogdanovic, et al, “Thermodynamic investigation of the magnesium–hydrogen system”, Journal of Alloys and Compounds, Vol. 282, pp. 84-92, 1999.
[12] H. Simchi, A. Kaflou & A. Simchi, “Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying”, International Journal of Hydrogen Energy, Vol. 34, pp. 7724-7730, 2009.
[13] A. L. Zalusk & J. O. Strom–Olsen, “Nanocrystalline magnesium for hydrogen storage”, Journal of Alloys and Compounds, Vol. 288, pp. 217–225, 1999.
[14] H. Simchi, A. Kaflou & A. Simchi, “Metal hydrides show potential under stress”, Metal Powder Report, Vol. 64, pp. 24-26, 2009.
[15] J. Zhang, Y. C. Zhou, Z. S. Ma, L. Q. Sun & P. Peng. “Strain effect on structural and dehydrogenation properties of MgH2 hydride from first principles calculations”, Int. J. hydrogen energy, Vol. 38, pp. 3661, 2013.
[16] K. F. Aguey-Zinsou, J. R. Ares Fernandez, T. Klassen & R. Bormann, “Effect of Nb2O5 on MgH2 properties during mechanical milling”, Int J Hydrogen Energy, Vol. 32, pp. 2400–7, 2007.
[17] O. G. Ershova, et al, “Influence of Ti, Mn, Fe, and Ni addition upon thermal stabilityand decomposition temperature of the MgH2 phase of alloys synthesized by reactive mechanical alloying”, Journal of Alloys and Compounds, Vol. 464, pp. 212–218, 2008.
[18] G. Barkhordarian, T. Klassen & R. Bormann, “Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction”, Journal of Physical Chemistry, Vol. 110B, pp. 11020-11024, 2006.
_||_