بررسی تاثیر افزودن تقویت کننده Cr2O3 بر خواص مکانیکی و رفتار اکسیداسیون دمای بالای پوشش استلایت 6 تولید شده به روش پاشش پلاسمایی بر روی زیرلایه IN-738
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمصطفی طهری 1 , محمد گواهیان جهرمی 2 , محمد جهانبازی گوجانی 3 , محمد نجفی بیرگانی 4
1 - مربی، گروه مهندسی مواد و متالورژی، مجتمع آموزش عالی فنی و مهندسی اسفراین، خراسان شمالی، ایران
2 - گروه مهندسی مواد و متالورژی، مجتمع آموزش عالی فنی و مهندسی اسفراین، خراسان شمالی، ایران
3 - گروه مهندسی مواد و متالورژی، مجتمع آموزش عالی فنی و مهندسی اسفراین، خراسان شمالی، ایران
4 - گروه مهندسی مواد و متالورژی، مجتمع آموزش عالی فنی و مهندسی اسفراین، خراسان شمالی، ایران
کلید واژه: پاشش پلاسمایی, استلایت6, اکسیداسیون دمای بالا, پوشش های کامپوزیتی,
چکیده مقاله :
دراین پژوهش تاثیر اضافه کردن اکسید کروم بر خواص مکانیکی پوشش پاشش حرارتی استلایت 6 و رفتار اکسیداسیون دمای بالا این پوشش ارزیابی شد. بدین منظور ابتدا مقادیر صفر، 10، 20 و 30 درصد اکسید کروم به پودر استلایت 6 اضافه شده و به روش پاشش حرارتی پلاسمایی بر روی زیر لایه آلیاژIN_738 پوشش دهی شد. به منظور بررسی ریز ساختاری، سختی سنجی، ضخامت سنجی، تخلخل سنجی و فازشناسی پوشش، از میکروسکوپ نوری و الکترونی، پرتو پراش ایکس و دستگاه میکروسختی سنج ویکرز استفاده شد. در ادامه رفتار اکسیداسیون پوششها در دماهای 650، 750 و850 درجه سانتیگراد به مدت 50 ساعت مورد ارزیابی قرار گرفت. نتایج بررسیها نشان داد پوشش stellit6/%10wt.Cr2O3 کمترین نرخ اکسیداسیون را از خود نشان می دهد. این درحالی است که این پوشش سختی مناسب تری نسبت به پوشش فاقد تقویت کننده سرامیکی داشته است. نتایج بررسی های فازی پوششها نیز نشان داد وجود تقویت کننده سرامیکی Cr2O3 در پوشش، به عنوان مناطق ترجیحی برای تشکیل اکسیدهای کروم در حین آزمون اکسیداسیون را فراهم نموده است.
In this study, the effect of adding chromium oxide on mechanical properties and high temperature oxidation behavior of thermal sprayed stellite 6 coating on IN-738 has been investigated. For this purpose, first the 0, 10, 20 and 30 %wt. Cr2O3 powder added to satellite6 and plasma sprayed on the IN_738 substrate after mixing by mechanical milling. The optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometer (XRD) and micro-hardness used for micro-structure, porosity and phase analysis investigation. The isothermal oxidation behavior of composite coatings at 650, 750 and 850 ° C for 50 hours were evaluated. Results shows, the stellit6 / %10wt. Cr2O3 coating has the lowest oxidation rate. On the other hand, this coating shows the higher hardness other than non-reinforcement coating. The phase analysis investigation shows that the Cr2O3 oxide layer is forms during oxidation process on the surface of coatings. Its shows the Cr2O3 reinforcement is preferred areas for chromium oxides in thermal grown oxide (TGO) during oxidation
_||_
[1] H. Cho, K. Hyun Bang & B. Woo Lee, “Influence of refractory ceramiccoatings on high temperature properties of Inconel 617”, Surface & Coatings Technology, Vol. 205, pp. 409–413, 2010.
[2] W. S. Walston, “Coating and Surface Technologies For Turbine Air Foils”, G. E Aircraft Engines, Cincinnati, OH, The Minerals, Metals & Materials Society, pp. 579-588, 2004.
[3] س.ع.خسرویفرد،ا.ح.یقطین،ا.اخباریزاده و ع.عراقی، "بررسی خواص خوردگی سایشی و خوردگی داغ پوشش آلومینا اعمال شده بر روی پایه فولادی به روش پاشش حرارتی حاصل از سوخت اکسیژندار"، فرایندهای نوین در مهندسی مواد، دوره 10، شماره 1، ص 59-69، 1395.
[4] U. Malayoglu, A. Neville & G. Beamson, “Characterisation of the passive film on HIPed Stellite 6 alloy using X-ray photoelectron spectroscopy”, Materials Science and Engineering, Vol. 393A, pp. 91–101, 2005.
[5] Farnia & F. M. Ghaini, “Effect of Ta on the microstructure and hardness of Stellite 6 coating deposited by low power pulse laser treatments”, Surface & Coatings Technology, Vol. 213, pp. 278–284, 2012.
[6] م. ربانی خواه، ن. نبهانی و م. پیکری، "بررسی خواص پوشش استلایت 6 ایجاد شده به روش روکش کاری لیزر بر روی فولاد زنگ نزن مارتنزیتی 420 AISI"،فرایندهای نوین در مهندسی مواد دوره 3، شماره 4، ص 41-48، 1388.
[7] U. Malayoglu & A. Neville, “Comparing the performance of HIPed and Cast Stellite 6 alloy in liquid–solid slurries”, Wear, Vol. 255, pp. 181–194, 2003.
[8] Radu & D. Y. Li, “The wear performance of yttrium-modified Stellite 712 at elevated temperatures”,Tribology International, Vol. 40, pp. 254- 265, 2007.
[9] L. Klein, M. S. Killian & S. Virtanen, “The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys”, Applied Surface Science, Vol. 370, pp. 357–363, 2016.
[10] N. Cinca, E. López, S. Dosta & J. M. Guilemany, “Study of stellite-6 deposition by cold gas spraying”, Surface & Coatings Technology, Vol. 232, pp. 891–898, 2013.
[11] L. Klein, M. S. Killian & S. Virtanen, “The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys”, Vol. 69, pp. 43–49, 2013.
[12] G. Xu, M. Kutsuna, Z. Liu & L. Sun, “CharacteristicBehaviours of Clad Layer by a Multi-Layer Laser Cladding with Powder Mixture of Stellite-6 and Tungsten Carbide”, Surface & Coatings Technology, Vol. 201, pp. 3385-3392, 2006.
[13] T. S. Sidhu, S. Prakash & R. D. Agrawal, “Investigations on role of HVOF sprayed Co and Ni based coatings to combat hot corrosion”, Corrosion Eng. Sci. Technol, Vol. 43, pp. 335-342, 2008.
[14] H. Singh, D. Puri, S. Prakash & V. V. rama, “On the High-Temperature Oxidation Protection Behavior of Plasma-Sprayed Stellite-6 Coatings”, Metallurgical and Materials Transactions, Vol. 37, pp. 3047-3056, 2006.
[15] T. Sidhu, S. Prakash & R. D. Agrawal, “A comparative study of hot corrosion resistance of HVOF sprayed NiCrBSi and Stellite6 coated Ni based superalloy at 900°C”, Materials Science and Engineering, Vol. 445, pp. 210-218, 2007.
[16] L. Conceição & A. S. C. M. D'Oliveira, “The effect of oxidation on the tribolayer and sliding wear of a Co-based coating”, Surface & Coatings Technology, Vol. 288, pp. 69–78, 2016.
[17] م. برمر، ب. لطفی و ز. صادقیان، "تاثیرریزساختارروکشکامپوزیتیسوپرآلیاژپایهکبالتاستلایت6/کاربیدبورتولیدشده بهروشجوشکاری GTAW برمقاومتبهخوردگیدرمحیطنمکی"، علوم ومهندسی سطح، شماره 11، ص 61-67، 1389.
[18] ا. بهادرزاده و م. شمعانیان، "مشخصه یابی پوششهای پاشش حرارتی استلایت6"، علوم ومهندسی سطح، شماره 12، ص 61-67، 1390.
[19] N. Jegadeeswaran & M. R. Ramesh, “Hot Corrosion Behaviour of HVOF Sprayed Stellite-6 Coatings on Gas Turbine Alloys”, Trans Indian Inst Met, Vol. 67, pp. 87–93, 2014.
[20] م. طهری، "ارزیابی خواص مکانیکی و اکسیداسیون پوشش کامپوزیتی نانوساختار MCrAlY/YSZ تولید شده به روش HVOF، علوم و مهندسی سطح، شماره 15، ص 23-31 ، 1391.
[21] ک. شیخی حموله و م. صالحی، "توسعه پوششهای پاشش حرارتی HVOF کامپوزیتی استلایت6/کاربیدکروم و ارزیابی خواص آنها"، علوم و مهندسی سطح، شماره 26، ص 48-35، 1394.
[22] F. Tang, G. E. Kim, V. Provenzano & J. M. Schoenung, “Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings”, Thermal Spray Technology, Vol. 14, pp. 23-31, 2005.
[23] K. Ma. Julie & M. Schoenung, “Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO”, Surface & Coatings Technology, Vol. 205, pp. 5178–5185, 2011.
[24] W. Zhang & S. A. Sampath, “Universal method for representation of in-flight particle characteristics in thermal spray processes”, Journal of Thermal Spray Technology, Vol. 18, pp. 23-34, 2009.
[25] H. Hawthorne, B. Arsenault, J. Immarigeon & J Legoux, “Comparison of slurry and dry erosion behavior of some HVOF thermal sprayed coatings”, Wear, Vol. 225, pp. 825-833, 1999.
[26] R. A. Mahesh, R. J ayaganthan & S. Prakash, “Oxidation behavior of HVOF sprayed Ni–5Al coatings deposited on Ni- and Fe-basedsuperalloys under cyclic conditionˮ, Materials Science and Engineering A, Vol. 475, pp. 327–335, 2008.
[27] ف. نعیمی، م. ر. رحیمی پور، م. صالحی، "تاثیر آمادهسازی سطحی پوششهای پاشش حرارتی CoNiCrAlY بر رفتار اکسیداسیون این پوششها"، علوم ومهندسی سطح، شماره 25،ص 58-49، 1394.
[28] B. Pieraggi, “Calculations of parabolic reaction rate constants”, Oxid. Met, Vol. 27, pp. 177-185, 1987.
[29] F. Tang. L. Ajdelsztajn & G. E. Kim, “Improvmeent in oxidation behavior of nanostructured CoNiCrA1Y bond coat dispersed with nonosized alumina particles”, University of California Energy Institute's (UCEI) Energy Policy and Economics Working Paper Series, 2002.
[30] T. Y. Choi, J. H. Yoon, K. S. Kim, K. O. Song, Y. K. Joo, W. Fang, S. H. Zhang, S. J. Youn, H. G. Chun & S. Y. Hwang, “A study on HVOF coatings of micron and nano WC–Co powders”, Surface & Coatings Technology, Vol. 202, pp. 5556–5559, 2008.
[31] P. Puetz, X. Huang, R. S. Lima, Q. Yang & L. Zhao, “Characterization of transient oxide formation on CoNiCrAlY after heat treatment in vacuum and air”, Surface & Coatings Technology, Vol. 205, pp. 647–657, 2010.
[32] D. Mercier, C. Kaplin, G. Goodall, G. Kim & M. Brochu, “Isothermal oxidation behavior of cryomilledNiCrAlY bond coat: Homogeneity and growth rate of TGO”, Surface & Coatings Technology, Vol. 205, pp. 5178–5185, 2011.
[33] F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano & J. M. Schoenung, “Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating”, Surface &Coatings Technology, Vol. 185, pp. 228– 233, 2004.