بررسی خواص الکتروشیمیایی و مکانیکی پیل سوختی اکسید جامد ساخته شده توسط چاپگر سه بعدی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدکیوان میرزائی فشالمی 1 , زهرا صادقیان 2 , رامین ابراهیمی 3
1 - دانشجوی دکتری، گروه مهندسی مواد، دانشگاه شیراز، شیراز، ایران.
مربی، گروه مهندسی، دانشگاه پیام نور، تهران، ایران
2 - دانشیار، گروه مهندسی مواد، پژوهشگاه صنعت نفت، تهران، ایران.
3 - استاد، گروه مهندسی مواد، دانشگاه شیراز، شیراز، ایران.
کلید واژه: خواص مکانیکی, هدایت الکتریکی, پیل سوختی اکسید جامد, پرینتر سه بعدی, خواص الکتروشیمیایی,
چکیده مقاله :
تاکنون روشهای متنوعی برای ساخت پیلهای سوختی اکسید جامد معرفی شدهاند. در این پژوهش از تکنولوژی چاپ سه بعدی (3 D printing) برای تولید پیلهای سوختی اکسید استفاده گردیده است. در همین راستا ابتدا چاپگر سه بعدی مناسبی که توانایی چاپ دوغاب لایههای آند، کاتد و الکترولیت با ضخامت و سرعت مورد نظر را داشته باشد، ساخته شد. سپس دوغاب مناسب متشکل از مواد NiO-YSZ برای لایه آند، YSZ برای لایه الکترولیت و LSM برای کاتد، به همراه حلال و افزودنیهای مناسب تولید گردید و با استفاده از چاپگر سه بعدی لایه نشانی لایهها صورت گرفت. پس از تشکیل پیل، خشک کردن و سپس تفجوشی1 لایهها انجام شد. در ادامه برای تشخیص عناصر موجود، تعیین ریز ساختار، دانسیته و ضخامت لایهها، آزمایش SEM، Mapping، EDS و XRD صورت گرفت. منحنی I-V-P با جریان ثابت اکسیژن نشان داد که در دمای OC800 بیشترین توان چگالی در حدود W/cm2 84/0 و در محدوده ولتاژ 5/ 0 ولت وجود دارد. منحنی امپدانس نیز تحت ولتاژ مدار باز و در فرکانس بالا، مقداری برابر 23/0 و در محدوده فرکانس پایین، مقدار 25/1 را نشان داد. با انجام آزمون کشش، مدول یانگ پیل GPa 111 و استحکام شکست و استحکام تسلیم به ترتیب در حدود MPa 137 و MPa 120 به دست آمد.
Nowadays, various methods have been introduced for the fabrication of solid oxide fuel cells (SOFC). In this research, 3D printing technology has been used to produce oxide fuel cells. First, a 3D printer was constructed that has the ability to print the slurry of anode, cathode and electrolyte layers with the desired thickness and speed. Then a suitable slurry consisting of NiO-YSZ materials was produced for the anode layer, YSZ for the electrolyte layer and LSM for the cathode, with suitable solvents and additives. After cell formation, drying and then sintering of the layers were performed. The composition and microstructure characterization of layers has been performed by XRD, SEM, Mapping, EDS. The I-V-P curve showed the maximum power is around 0.84 W / cm2 at 800 OC with constant oxygen. The impedance curve values under open-circuit voltage were 0.23 Ωcm-2 and 1.25 Ωcm-2 at high and low frequencies, respectively. The tensile experiments indicated values 111 GPa for Young modulus and 137 MPa and 120 MPa values for the fracture toughness and the yield strength, respectively.
[1] S. Tabei, A. Sheidaei, M. Baniassadi, F. Pourboghrat & Garmestani, "Microstructure Reconstruction and Homogenization of Porous Ni-YSZ Composites for Temperature Dependent Properties", Journal of Power Sources, vol. 235, pp. 74-80, 2013.
[2] H. A. Hamedani, M. Baniassadi, M. Khaleel, X. Sun, S. Ahzi, D. Ruch, & H. Garmestani, "Microstructure, Property and Processing Relation in Gradient Porous Cathode of Solid Oxide Fuel Cells using Statistical Continuum Mechanics", Journal of Power Sources, vol. 196, pp. 6325-6331, 2011.
[3] M. Baniassadi, H. Garmestani, D. Li, S. Ahzi, M. Khaleel & X. Sun, "Three-phase Solid Oxide Fuel Cell Anode Microstructure Realization using Two-point Correlation Functions", Acta Materialia, vol. 59, pp. 30-43, 2011.
[4] H. Xu, B. Chen, P. Tan, W. Cai, W. He, D. Farrusseng & M. Ni, "Modeling of all porous solid oxide fuel cells", Appl. Energy, vol. 219, pp. 105-113, 2018.
[5] H. Xu, B. Chen, P. Tan, J. Xuan, M. M. Maroto-Valer, D. Farrusseng, Q. Sun & M. Ni, "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design", Appl. Energy, vol. 235, pp. 602-611, 2019.
[6] A. Faes, A. Nakajo, A. Hessler-Wyser, D. Dubois, A. Brisse & S. Modena, "Redox study of anode-supported solid oxide fuel cell", J. Power Sources, vol. 193, pp. 55-64, 2009.
[7] R. Zeng & Y. Huang, "High-performance low-temperature solid oxide fuel cells prepared by sol impregnation", J. Alloys Compd, vol. 810, pp. 151936-43, 2019.
[8] N. Ai, Z. Lü, K. Chen, X. Huang, X. Du & W. Su, "Effects of anode surface modification on the performance of low-temperature SOFCs", J. Power Sources, vol. 171, pp. 489-494, 2007.
[9] Z. Wang, N. Zhang, J. Qiao, K. Sun & P. Xu, "Improved SOFC performance with continuously graded anode functional layer, Electrochem", Commun, vol. 11, pp. 1120-1123, 2009.
[10] B. Dziurdzia, Z. Magonski & Planar Double-Sided, "Anode Supported SOFC Novel Design, Journal of Microelectronics and Electronic Packaging", vol. 8, pp. 1-7, 2011.
[11] S. Masciandaro, M. Torrell, P. Leone & A. Tarancon, "Three-dimensional printed Yttria-stabilized Zirconia self-supported electrolytes for Solid Oxide Fuel Cell applications", J. Europ. Cer. Soc, vol. 39, pp. 9-16, 2019.
[12] A. Pesce, A. Hornes, M. Nu´nez, A. Morata, M. Torrell & A. Tarancon, "3D printing the next generation of enhanced solid oxide fuel and electrolysis cells", J. Mater. Chem, vol. 8, pp. 16926–16932, 2020.
[13] Z. Feng, L. Liu, L. Li, J. Chen, Y. Liu, Y. Li, L. Hao & Y. Wu, "3D printed Sm-doped ceria composite electrolyte membrane for low-temperature solid oxide fuel cells", Int. J. Hydrogen Energy, vol. 44, pp.13843-13851, 2019.
[14] M. Masciandaro, P. Torrell, Leone & A. Tarancón, "Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications", Journal of the European Ceramic Society, vol. 39, pp. 9-16, 2019.
[15] Z. Sadeghian, J. G. Heinrich & F. Moztarzadeh, "Direct laser sintering of hydroxyapatite implants by layer-wise slurry deposition (LSD), Ceram. Forum. Int, vol. 81, no. 12, pp. E39 - E43, 2004.
[16] T. Mühler, J. G. Heinrich, C. M. Gomes & J. Günster, "Slurry-based Additive Manufacturing of Ceramics", Int. J. Appl. Ceram. Technol, pp.1–8, 2013.
[17] M. A. Sukeshini & R. Cummins, "Ink-Jet Printing: A Versatile Method for Multilayer Solid Oxide Fuel Cells Fabrication", Journal of the American Ceramic Society, vol. 92, no. 12, pp. 2913–2919, 2009.
[18] E. Kim, H. Kim, Ch. Bae, D. Lee, J. Moon, J. Kim & H. Shin, "Formation of yttria‑stabilized zirconia nanotubes by atomic layer deposition toward efficient solid electrolytes", Nano Convergence, vol. 4, no. 31, pp. 440-446, 2017.
[19] N. Srivastava, "Realizing NiO nanocrystals from a simple chemical method", Bulletin of Materials Science, vol. 33, no. 6, pp. 653-656, 2010.
[20] G. B. Jung, L. H. Fang, M. J. Chiou, X. V. Nguyen, A. Su, W. T. Lee, S. W. Chang, I. C. Kao & J. W. Yu, "Effects of Pretreatment Methods on Electrodes and SOFC Performance", Energies, vol. 7, pp. 3922-3933, 2014.
[21] J. T. Richardson, R. Scates & M. V. Twigg, "X-ray Diffraction Study of Nickel Oxide Reduction by Hydrogen", Applied Catalysis A General, vol. 246, no. 1, pp.137-150, 2003.
[22] O. Bezdorozhev, H. Borodianska, Y. Sakka & O. Vasylkiv, "Spark Plasma Sintered Ni-YSZ/YSZ Bi-Layers for Solid Oxide Fuel Cell", Journal of Nanoscience and Nanotechnology, vol. 13, pp. 4150–4157, 2013.
[23] D. Salehzadeh, M. Torabi, Z. Sadeghian & P. Marashi, "A multiscale-architecture solid oxide fuel cell fabricated by electrophoretic deposition technique", Journal of Alloys and Compounds, vol. 830, pp.154654, 2020.
[24] G. B. Jung, T. J. Huang & C. L. Chang, "Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte", Journal of Solid State Electrochemistry, vol. 6, pp. 225-230, 2002.
[25] V. M. Janardhanan, & O. Deutschmann, "Modeling of Solid-Oxide Fuel Cells", Z. Phys. Chem, vol. 221, pp. 443–478, 2007.
[26] J. Fergus, R. Hui, X. Li, D. P. Wilkinson & J. Zhang, "Materials properties and performance solid oxide fuel cells", CRC press, 2016.
[27] J. J. Haslam, B. W. Ai-Quoc Pham, J. F. Chung & R. S. DiCarlo, "Glass Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell", J. Am. Ceram. Soc, vol. 88, no. 3, pp. 513–518, 2005.
[28] D. Osinkin, D. Bronin, S. Beresnev, N. Bogdanovich, V. Zhuravlev, G. Vdovin & T. Demyanenko, "Thermal expansion, gas permeability, and conductivity of NiYSZ anodes produced by different techniques", J. Solid State Electrochem. vol. 18, 149–156, 2014.
[29] W. Bao, Q. Chang & G. Meng, "Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell", Journal of Membrane Science, vol. 259, pp. 103–109. 2005.
[30] L. Hu, C. A. Wang & Y. Huang, "Porous Yttria-Stabilized Zirconia Ceramics with Ultra-Low Thermal Conductivity", Journal of Materials Science, vol. 45, pp. 3242–3246, 2010.
[31] Z. Wang, N. Zhang, J. Qiao, K. Sun & P. Xu, "Improved SOFC performance with continuously graded anode functional layer", Electrochem, Commun, vol. 11, pp. 1120-1123, 2009.
[32] D, Dong, J, Gao, X, Liu & G, Meng, "Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting", Journal of Power Sources, vol. 165, pp. 217–223, 2007.
[33] Y. Lin, S. Fang, D. Su, K. S. Brinkman & F. Chen, "Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors", Nature Communication, vol. 6, no. 6824, pp. 1-9, 2015.
[34] O. E. Oskouyi, A. Maghsoudipour, M. Shahmiri & M. Hasheminiasari, "Preparation of YSZ electrolyte coating on conducting porous NioYSZ cermet by DC and pulsed constant voltage electrophoretic deposition process for SOFCs applications", J. Alloys Compd, vol. 795, pp. 361-369, 2019.
[34] A. R. Hanifi, M. A. Laguna-Bercero, N. K. Sandhu, T. H. Etsell & P. Sarkar, "Tailoring the microstructure of a solid oxide fuel cell anode support by calcination and milling of YSZ", Sci. Rep, vol. 6, 27359, 2016.
[35] M. Laguna-Bercero, "Recent advances in high-temperature electrolysis using solid oxide fuel cells: a review", J. Power Sources, vol. 203, pp. 4-16, 2012.
[36] S. K. Pratihar, A. Dassharma & H. S. Maiti, "Processing microstructure property correlation of porous NieYSZ cermets anode for SOFC application", Mater. Res. Bull, vol. 40, pp. 1936-1944, 2005.
[37] J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta & S. C. Singhal," Polarization effects in intermediate temperature, anode‐supported solid oxide fuel cells", Journal of the Electrochemical Society, vol. 146, pp. 69-78, 1999.
[38] B. Mani & M. H. Paydar, "Mechanical behaviour of multi-layer half-cells of microtubular solid oxide fuel cells fabricated by the co-extrusion process", Ceramics International, vol. 42, pp. 4194-4203, 2016.
[39] S. Biswas, T. Nithyanantham & N. T. Saraswathi, "Evaluation of elastic properties of reduced NiO-8YSZ anodesupported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments", J Mater Sci, vol. 44, pp. 778-785, 2009.
[40] A. SelCuk & A. Atkinson, "Elastic Properties of Ceramic Oxides Used in Solid Oxide Fuel C: ells (SOFC)", Journal of the European Ceramic Society, vol. 17, pp. 1523-1532, 1997.
[41] A. SelCuk, G. Merere & A. Atkinson, "The influence of electrodes on the strength of planar zirconia solid oxide fuel cells", Journal of Materials Science, vol. 36, PP.1173- 1182, 2001.
[42] Z. Sadeghian, "Laser sintering of hydroxyapatite by layer-wise slurry deposition (LSD)", Ph.D. Dissertation, Clausthal University of Technology, Germany, 2005.
[43] ف. صادقزاده، ح. توللی و م. ع. کریمی، "بررسی استفاده از طیفنگاری امپدانس الکتروشیمیایی در پوششها"، فصلنامه پژوهشهای کاربردی در فنی و مهندسی، سال اول، شماره اول، صفحه 32-1، 1395.
[44] X. Chen, J. Lin, L. Sun, T. Liu, J. Wu, Z. Sheng & Y. Wang, "Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer", Electrochim, Acta, vol. 298, pp. 112-120, 2019.
[45] N. Ai, Z. Lü, K. Chen, X. Huang, X. Du & W. Su, "Effects of anode surface modification on the performance of low-temperature SOFCs", J. Power Sources, vol. 171, pp. 489-494, 2007.
[46] ح. عبدالله پور، "کاربرد روش طیفسنجی امپدانس الکتروشیمیایی بهعنوان یک روش غیر مخرب در پایش و تحلیل خوردگی"، فناوریهای آزمونهای غیر مخرب، دوره دوم، شماره پنجم، پاییز و زمستان 1394.
[47] D. Young, A. M. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer & T. Reitz, "Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells", Journal of Power Sources, vol. 184, pp. 191–196, 2008.
[48] J. Sadeghian, G. Heinrich & F. Moztarzadeh, "Influence of powder pre-treatments and milling on dispersion ability of aqueous hydroxyapatite-based suspensions", Ceramics International, vol. 32, pp. 331–337, 2006.
_||_