بهبود چقرمگی شکست و مقاومت سایشی پوشش پلاسمایی اکسید کروم از طریق افزودن نانوذرات YSZ
محورهای موضوعی : خوردگی و حفاظت موادسید مهدی هاشمی 1 , نادر پروین 2 , ضیاء والفی 3
1 - دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران
2 - دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیر کبیر تهران، ایران
3 - استادیار، مجتمع دانشگاهی مواد و فناوری های ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
کلید واژه: چقرمگی شکست, رفتار سایشی, پاشش حرارتی, Cr2O3-YSZ, نانو/مولتیمودال,
چکیده مقاله :
در پژوهش حاضر، رفتار سایشی پوششهای Cr2O3-20YSZ (CZ) و Cr2O3 (C) ایجادشده به روش پاشش پلاسمایی اتمسفری (APS) بررسی شده است. بدین منظور در ابتدا نانوپودرهای اکسید کروم و YSZ پس از 5 ساعت آسیاکاری در آسیاب با انرژی بالا تولید شده و متعاقباً پاشش پلاسمایی مخلوطهای پودری آگلومره بر سطح زیرلایه فولادی ضدزنگ 304L انجام گرفت. ارزیابیهای ریزساختار این پوشش های سرامیکی از طریق پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی گسیل مغناطیسی (FE-SEM) و میکروسکوپ نوری انجام شد. خواص مکانیکی پوششها شامل سختی، استحکام چسبندگی و چقرمگی شکست بهمنظور توجیه رفتار سایشی پوششها ارزیابی گردید. آزمون سایش گلوله بر دیسک، با بهکارگیری گلوله آلومینا و در دمای محیط انجام شد. افزودن نانوذرات YSZ به زمینه اکسیدکروم، از طریق مکانیزم استحاله زیرکونیا موجب افزایش چقرمگی شکست پوشش تولیدی گردید که البته کاهش جزئی در سختی پوشش را نیز به همراه داشت. نتایج آزمون سایش نشان داد که هر دو پوشش دارای ضریب اصطکاک در بازه مناسب 15/0-11/0 بودند. پوشش کامپوزیتی CZ در مقایسه با پوشش C مقاومت سایشی بالاتری نشان داد به گونهای که کاهش وزن پوششها به ترتیب برابر با 11 و 31 میلیگرم به دست آمد. بررسیهای صورت گرفته در شیار ناشی از سایش پوشش CZ نشان داد که نرخ سایش پایینتر این پوشش مربوط به چقرمگی بالاتر پوشش و در نتیجه پر شدن تخلخلهای پوشش از طریق تغییر شکل پلاستیکی براده های سایش بود.
In the present research, wear behavior of Cr2O3-20YSZ (CZ) and Cr2O3 (C) coatings created using atmospheric plasma spray (APS) process was evaluated. For this purpose, Cr2O3 and YSZ nanopowders were produced after milling for 5h in a high-energy ball mill and subsequently plasma spraying of the agglomerated powders was carried out on 304L substrates. Microstructural characterization of these ceramic coatings was performed using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and optical microscope. Mechanical tests including adhesive strength, fracture toughness, and micro-hardness were used so as to explain the coatings wear behavior. Sliding wear test was conducted using a ball-on-disk configuration against an alumina counterpart at room temperature. Addition of YSZ particles to the Cr2O3 matrix due to the phase transformation toughening mechanism associated with tetragonal zirconia resulted in an increase in the fracture toughness while decreased the micro-hardness. It was found that the composite coatings had the friction coefficients of the proper order of 0.11-0.15. The CZ composite coating compared to the C coating showed the higher wear resistance so that the weight loss was obtained as 11 and 31 mg, respectively. Observation of the wear tracks of the coatings indicated that the lower wear rate of the CZ coating was attributed to its higher toughness and therefore filling the pores due to the higher plastic deformation of its wear debris.
[1] J. Mehta, V. K. Mittal & P. Gupta, “Role of thermal spray coatings on wear, erosion and corrosion behavior: a review”, Applied Science and Engineering, Vol. 20, pp. 445-452, 2017.
[2] P. L. Fauchais, J. V. R. Heberlein & M. I. Boulos, “Thermal spray fundamentals”, Springer, 2014.
[3] M. Akhtari-Zavareh, A. A. D. Mohammed Sarhan & B. B. AbdRazak, “Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications”, Ceramics International, Vol. 40, pp. 14267-14277, 2014.
[4] R. F. Bunshah, “Handbook of hard coatings”, Chapter3, NOYES Publications, New York, USA, 2001.
[5] A. Vardelle, et al., “The 2016 plasma roadmap: low temperature plasma science and technology”, Journal of Thermal Spray Technology, Vol. 25, pp. 1376-1440, 2016.
[6] I. Adamovich, S. D. Baalrud, A. Bogaert, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden & P. Favia, “The 2017 plasma roadmap: low temperature plasma science and technology”, Journal of Physics D: Applied Physics, Vol. 50, pp. 1–46, 2017.
[7] M. Gell, E. H. Jordan, & D. Goberman, “Development and implementation of plasma sprayed nanostructured ceramic coatings”, Surfaceand Coatings Technology, Vol. 146, pp. 48–54, 2001.
[8] D. Ghosh, A. K. Shukla & H. Roy, “Nano structured plasma spray coating for wear and high temperature corrosion resistance applications”, Journal of the Institution of the Engineers, Vol. 95, pp. 57–64, 2014.
[9] W. M. Rainforth, “The wear behaviour of oxide ceramics- a review”, Journal of Materials Science, Vol. 39, pp. 6705–6721, 2004.
[10] A. Cellard, V. Garnier, G. Fantozzi, G. Baret, & P. Fort, “Wear resistance of chromium oxide nanostructured coatings”, Ceramics International, Vol. 35, pp. 913–916, 2009.
[11] V. P. Singh, A. Sil & R. Jayaganthan, “Wear of plasma sprayed conventional and nanostructured Al2O3 and Cr2O3, based coatings”, Transactions of the Indian Institute of Metals, Vol. 65, pp. 1–12, 2012.
[12] R. S. Lima & B. R. Marple, “Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review”, Journal of Thermal Spray Technology, Vol. 16, pp. 40-63, 2007.
[13] P. S. Babu, D. Sen, A. Jyothirmayi, L. RamaKrishna & D. SrinivasaRao, “Influence of microstructure on the wear and corrosion behavior of detonation sprayed Cr2O3-Al2O3 and plasma sprayed Cr2O3 coatings”, Ceramics International, Vol. 44, pp. 2351-2357, 2018.
[14] م. طهری، "بررسی تأثیر افزودن تقویتکننده Cr2O3 بر خواص مکانیکی و رفتار اکسیداسیون دمای بالای پوشش استلایت 6 تولید شده به روش پاشش پلاسمایی بر روی زیرلایه IN-738"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 1، صفحه 160-149، بهار 1396.
[15] K. V. S. Rao, C. S. Ramesh, K. G. Girishaa & Y.D. Rakesh, “Slurry erosive wear behavior of plasma sprayed Cr2O3 coatings on steel substrates”, Materials today: proceedings, Vol. 4, pp. 10283-10287, 2017.
[16] P. Zamani & Z. Valefi, “Microstructure, phase composition and mechanical properties of plasma sprayed Al2O3, Cr2O3 and Cr2O3-Al2O3 composite coatings”, Surface and Coatings Technology, vol. 316, pp. 138-145, 2017.
[17] L. Vernhes, C. Bekins, N. Lourdel & R.S. Lima, “Nanostructured and conventional Cr2O3, TiO2, and TiO2-Cr2O3 thermal-sprayed coatings for metal-seated ball valve applications in hydrometallurgy”, Journal of Thermal Spray Technology, Vol. 25, pp. 1068–1078, 2016.
[18] B. Cantor, F. Dunne & I. Stone, “Metal and Ceramic Matrix Composites”, IOP Publishing Ltd, 2004.
[19] L. M. Berger, “Thermal sprayed coatings and their tribological performances”, Chapter 8: Tribology of thermally sprayed coatings in the Al2O3-Cr2O3-TiO2 system, Fraunhofer Institute IWS, Germany, pp. 227-267, 2015.
[20] O. Roberts, A. J. G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S. M. Kreynin, T. K. Neo &A.M. Korsunsky, “A study of phase transformation at the surface of a zirconia ceramic”, in: Proc. World Congr. Eng. Vol II, London, UK, 2014.
[21] N. Zhang & M. A. Zaeem, “Competing mechanisms between dislocation and phase transformation in plastic deformation of single crystalline Yttria-Stabilized tetragonal zirconia nanopillars”, Acta Materialia, Vol. 120, pp. 337–347, 2016.
[22] J. W. Murraya, A. Levaa, Sh. Joshib & T. Hussain, “Microstructure and wear behaviour of powder and suspension hybrid Al2O3–YSZ coatings”, Ceramics International, Vol. 44, pp. 8498-8504, 2018.
[23] A. Nastic, A. Merati & M. Bielawski, “Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor”, Journal of Materials Science & Technology, Vol. 31, pp. 773-783, 2015.
[24] J. Gou, J. Zhang & Q. Zhang, “Effect of nano-Si3N4 additives and plasma treatment on the dry sliding wear behavior of plasma sprayed Al2O3-8YSZ ceramic coatings, Journal of Thermal Spray Technology, Vol. 26, pp. 764–777, 2017.
[25] E. Bakan, & R. Vaben, “Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties”, Journal of Thermal Spray Technology, Vol. 26, pp. 992-1010, 2017.
[26] S. R. Choi, D. Zhu, & R. A. Miller, “Mechanical properties/database of plasma sprayed ZrO2-8wt% Y2O3 thermal barrier coatings”, International Journal of Applied ceramic technology, Vol. 1, pp. 330-342, 2005.
[27] س. ع. صادقی فدکی، ض. والفی و ک. زنگنه مدار، "ارزیابی میکرو ساختاری پوششهای YSZ پاشش پلاسمایی"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 1، صفحه 105-95، بهار 1394.
[28] J. R. Davis, “Handbook of thermal spray technology”, ASM International, 2004.
[29] R. Banerjee & I. Manna, “Ceramic nanocomposites”, Woodhead Publishing Limited, 2013.
[30] K. Strecker, S. Ribeiro & M. J. Hoffmann, “Fracture toughness measurements of LPS-SiC: a comparison of the indentation technique and the SEVNB method”, Materials Research, Vol. 8, pp. 121-124, 2005.
[31] D. K. Shetty, I. G. Wright & P. N. Mincer, “Indentation fracture of WC-Co cermets”, Journal of Materials Science, Vol. 20, pp. 1873-1882, 1985.
[32] E. I. C. Suryanarayana & T. Klassen, “Synthesis of nanocomposites and amorphous alloys by mechanical alloying”, Journal of Materials Science, Vol. 46, pp. 6301–6315, 2011.
[33] E. P. Song, J. Ahn & S. Lee, “Microstructure and wear resistance of nanostructured Al2O3–8wt.%TiO2 coatings plasma-sprayed with nanopowders”, Surface and Coatings Technology, Vol. 201, pp. 1309–1315, 2006.
[34] J. Ahn, B. Hwang & E. P. Song, “Correlation of microstructure and wear resistance of Al2O3-TiO2 coatings plasma sprayed with nanopowders”, Metallurgical and Materials Transactions A, Vol. 37, pp. 1851-1861, 2006.
[35] N. L. Parthasarathi, U. Borah & Sh. K. Albert, “Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316L stainless steel at elevated temperatures”, Computer Modeling and New Technologies, Vol. 17, pp. 51-63, 2013.
[36] H. Czichos, “A systems approach to the science and technology of friction, lubrication and wear”, Tribology series 1, 1978.
[37] A. Amanov & Y. S. Pyun, “Friction reduction and wear resistance enhancement of SiC and Si3N4 ceramics under dry conditions”, Tribology Transactions, Vol. 59, pp. 491-501, 2016.
[38] Y. Zhou, H. Zhu, W. Zhang, X. Zuo, Y. Li, & J. Yang, Influence of surface roughness on the friction property of textured surface, Advances in Mechanical Engineering, pp 1-9, 2015.
[39] S. T. Aruna, N. Balaji & K. S. Rajam, “Phase transformation and wear studies of plasma sprayed yttria stabilized zirconia coatings containing various mol% of yttria”, Materials Characterization, Vol. 62, pp. 697–705, 2011.
[40] P. Ganapathy, G. Manivasagam, S. Rajamanickam, & A. Natarajan, “Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application”, International Journal of Nanomedicine, Vol. 10, pp. 213-222, 2015.
[41] ر. رحیمزاده، ع. شفیعی و ک. امینی، "بررسی ریزساختار و خواص سایشی پوششهای NiCrAlY تقویتشده با ذرات Al2O3 اعمالی به روش پاشش پلاسمایی"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 1، صفحه 57-41، بهار 1397.
[42] S. T. Siegmann, O. Brandt, & N. Margadant, Tribological Requirements of Thermally Sprayed Coatings for Wear Resistant Applications, 1st International Thermal Spray Conference - Thermal Spray: Surface Engineering via Applied Research, Quebec, Canada, pp. 1135-1140, 2000.
[43] K. Yang, X. Zhou & Ch. Liu, “Sliding wear performance of plasma-sprayed Al2O3-Cr2O3 composite coatings against graphite under severe conditions”, Journal of Thermal Spray Technology, Vol. 22, pp. 1154-1162, 2013.
[44] Y. Wang & S. M. Hsu, “Wear and wear transition mechanisms of ceramics”, wear, Vol. 195, pp. 12-122, 1996.
[45] J. Jie, L. Huan & L. Xiaohan, “Friction and wear behavior of micro arc oxidation coatings on magnesium alloy at high temperature”, Rare Metal Materials and Engineering, Vol. 46, pp. 1202-1206, 2017.
[46] F. Onoue & K. Tsuji, “X-Ray elemental imaging in depth by combination of FE-SEM-EDS and glow discharge sputtering”, ISIJ International, Vol. 53, pp. 1939–1942, 2013.
[47] A. Kulkarni, J. Gutleber & S. Sampath, “Studies of the microstructure and properties of dense ceramic coatings produced by high-velocity oxygen-fuel combustion spraying”, Materials Science and Engineering A, Vol. 369, pp. 124-137, 2004.
[48] Y. Xie & H. M. Hawthorne, “Wear mechanism of plasma-sprayed alumina coating in sliding contacts with harder asperities”, Wear, Vol. 225, pp. 90-103, 1999.
[49] S. M. Hsu & M. Shen, “Wear prediction of ceramics”, Wear, Vol. 256, pp. 867-878, 2004.
[50] L. Berger, C. C. Stahr & S. Saaro, “Development of ceramic coatings in the Cr2O3-TiO2 system”, Thermal Spray Bulletin, Vol. 2, pp 64-77, 2009.
51] S. Jahanmir, “Friction and wear of ceramics”, Chapter 11, CRC Press, 2010.
[52] T. E. Fischer, M. P. Anderson & S. Jahanmir, “Influence of fracture toughness on the wear resistance of Yttria-doped zirconium oxide”, Journal of American Ceramic Society, Vol. 72, pp. 252-257, 1989.
[53] L. Wu, X. Guo & J. Zhang, “Abrasive resistant coatings- a review”, Lubricants, Vol. 2, pp. 66-89, 2014.
[54] P. Svec, A. Brusilova & J. Kozankova, “Effect of microstructure and mechanical properties on wear resistance of silicon nitride ceramics”, Materials Engineering, Vol. 16, pp. 34-40, 2008.
_||_