مقایسه خواص اکسیداسیون همدما و شوک حرارتی پوشش CoNiCrAlY اعمالشده با استفاده از فرایندهای پاشش پلاسمایی اتمسفری و پاشش پلاسمایی تحت گاز محافظ نیتروژن
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدبهزاد قاسمی 1 , ضیاء والفی 2 , سعید تقی رمضانی 3
1 - کارشناس ارشد مهندسی مواد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
2 - دانشیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
3 - کارشناس ارشد مهندسی مواد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت.
کلید واژه: شوک حرارتی, پوشش تک لایه CoNiCrAlY, پاشش پلاسمایی اتمسفری, پاشش پلاسمایی با دوش گاز خنثی, اکسیداسیون همدما,
چکیده مقاله :
در این پژوهش خواص پوشش اعمالشده توسط فرایند پاشش پلاسمایی معمولی و با دوش گاز خنثی بررسی و مقایسه شد، بدینصورت که قطعه دوش به تفنگ پلاسما الحاق گردید تا با خروج گاز خنثی نیتروژن از دوش، جت پلاسما را در برابر ورود اکسیژن اتمسفر حفاظت نماید. مشخصهیابی ریزساختاری پوششها با استفاده از میکروسکوپ نوری و میکروسکوپ الکترونی روبشی مجهز به طیفسنج پراش انرژی انجام شد. سختی پوششها نیز به روش ویکرز و تحت نیروی 30 گرم اندازهگیری شد. آزمونهای اکسیداسیون همدما و شوک حرارتی به ترتیب در دماهای 1000 و ºC 950 انجام گرفتند. نتایج حاصل بعد از پاشش نشان می دهند که استفاده از گاز محافظ نیتروژن مفید بوده و پوشش حاصل با استفاده از دوش نیتروژن دارای اکسید و تخلخل کمتر (میزان 5 درصد) و ساختار همگنتری است. نتایج مربوط به اکسیداسیون هم دما نشان داد سرعت رشد لایه TGO در نمونه پاشش شده با دوش نیتروژن کمتر است. آزمون شوک حرارتی نشان داد که نمونه پاشش شده با دوش نیتروژن بهواسطه رشد لایه لایه و منظم TGO و همچنین میزان اکسید و تخلخل کمتر نسبت به نمونه پاشش شده بدون دوش نیتروژن، از مقاومت بیشتری برخوردار است. همچنین ریزسختی پوشش پاشش شده بدون دوش نیتروژن میزان 35 ویکرز بیشتر از پوشش ایجادشده با دوش نیتروژن است.
In this research, the properties of the coating applied by conventional plasma spray and with inert gas shroud has been studied and compared, in the way that nozzle like part attached to plasma gun in order to protect the plasma jet by exiting nitrogen from the nozzle. The Microstructural characterization of the coatings was performed by optical microscope and scanning electron microscope equipped with energy dispersive spectroscope. Hardness of coatings is also measured by Vickers method under the applied load of 30 gram-force. Isothermal oxidation and thermal shock tests are done at 1000 and 950ºC respectively. Post-spray results show that the use of nitrogen gas shroud is useful and coating achieved by nitrogen shroud has less oxide and porosity and has more homogeneous structure. Results from isothermal oxidation show that TGO layer growth rate in the specimen sprayed by nitrogen shroud is less. Thermal shock test shows that the specimen sprayed by nitrogen shroud has more resistance against thermal shock due to layer by layer and regular growth of TGO and having less oxide and porosity in comparison with the same specimen sprayed without nitrogen shroud. Also, the microhardness of sprayed coating without nitrogen shroud was 35 Vikers more than the applied coating with nitrogen shroud.
[1] R. Mahesh, R. Jayaganthan & S. Prakash, "Microstructural characterization and hardness evaluation of HVOF sprayed Ni–5Al coatings on Ni-and Fe-based superalloys", Journal of Materials Processing Technology, vol. 209, no. 7, pp. 3501-3510, 2009.
[2] T. Sidhu, S. Prakash & R. Agrawal, "Hot corrosion and performance of nickel-based coatings", Current Science, pp. 41-47, 2006.
[3] M. Eskner, "Mechanical behaviour of gas turbine coatings", Materialvetenskap, 2004.
[4] M. J. Donachie & S. J. Donachie, "Superalloys: a technical guide", ASM international, 2002.
[5] ر. سحرخیز، ض. والفی، م. میرجانی و س. تقیرمضانی، "مقایسه ریزساختار و مقاومت به اکسیداسیون دما بالای پوششهای NiCrAlY ایجاد شده به روش پاشش پلاسمایی اتمسفری (APS) و پاشش پلاسمایی با غلاف جامد محافظ (SSPS)," فرآیندهای نوین در مهندسی مواد، سال 15، شماره 2، صفحه 82-65، 2021.
[6] J. R. Davis, "ASM specialty handbook: heat-resistant materials", Asm International, 1997.
[7] G. Goward, "Progress in coatings for gas turbine airfoils," Surface and coatings technology, vol. 108, pp. 73-79, 1998.
[8] U. Dragos, M. Gabriela, B. Waltraut & C. Ioan, "Improvement of the oxidation behaviour of electron beam remelted MCrAlY coatings", Solid state sciences, vol. 7, no. 4, pp. 459-464, 2005.
[9] C. Richard, G. Beranger, J. Lu & J. Flavenot, "The influences of heat treatments and interdiffusion on the adhesion of plasma-sprayed NiCrAlY coatings", Surface and Coatings Technology, vol. 82, no. 1-2, pp. 99-109, 1996.
[10] F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano & J. M. Schoenung, "Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating", Surface and Coatings Technology, vol. 185, no. 2-3, pp. 228-233, 2004.
[11] H. J. Jang, D. H. Park, Y. G. Jung, J. C. Jang, S. C. Choi & U. Paik, "Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs)", Surface and Coatings Technology, vol. 200, no. 14-15, pp. 4355-4362, 2006.
[12] S. Matthews, "Shrouded plasma spray of Ni–20Cr coatings utilizing internal shroud film cooling", Surface and Coatings Technology, vol. 249, pp. 56-74, 2014.
[13] C. J. Li & W. Y. Li, "Effect of sprayed powder particle size on the oxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition", Surface and Coatings Technology, vol. 162, no. 1, pp. 31-41, 2003.
[14] Y. Bar-Cohen, "High temperature materials and mechanisms", CRC Press, 2014.
[15] G. Espie & et al., "In-flight oxidation of iron particles sprayed using gas and water stabilized plasma torch", Surface and Coatings Technology, vol. 195, no. 1, pp. 17-28, 2005.
[16] V. Sobolev & J. Guilemany, "Effect of oxidation on droplet flattening and splat-substrate interaction in thermal spraying", Journal of thermal spray technology, vol. 8, no. 4, pp. 523-530, 1999.
[17] R. Rajendran, "Gas turbine coatings–An overview", Engineering Failure Analysis, vol. 26, pp. 355-369, 2012.
[18] M. Peters, C. Leyens, U. Schulz & W. A. Kaysser, "EB‐PVD thermal barrier coatings for aeroengines and gas turbines", Advanced engineering materials, vol. 3, no. 4, pp. 193-204, 2001.
[19] N. P. Padture, M. Gell & E. H. Jordan, "Thermal barrier coatings for gas-turbine engine applications", Science, vol. 296, no. 5566, pp. 280-288, 2002.
[20] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی و ف. نعیمی، "بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوشش های MCrAlY اعمال شده به روش HVOF" فرآیندهای نوین در مهندسی مواد، سال 10، شماره 3، صفحه 80-67، 2016.
[21] R. Lima, D. Nagy& B. Marple, "Bond coat engineering influence on the evolution of the microstructure, bond strength, and failure of TBCs subjected to thermal cycling", Journal of Thermal Spray Technology, vol. 24, no. 1-2, pp. 152-159, 2015.
[22] S. A. Deshpande, "Thermal spray coatings: Insights into microstructural evolution and high temperature behavior across length scales", State University of New York at Stony Brook, 2004.
[23] L. Chen, C. Chen, L. Zhang, Y. Tian & T. Q. Lei, "Characterization of Isothermal Oxidation of Air Plasma Sprayed NiCrAlY Coatings", Surface Review and Letters, vol. 13, no. 05, pp. 551-555, 2006.
[24] T. Sidhu, S. Prakash & R. Agrawal, "Performance of high-velocity oxyfuel-sprayed coatings on an Fe-based superalloy in Na 2 SO 4-60% V 2 O 5 environment at 900° C part II: Hot corrosion behavior of the coatings", Journal of materials engineering and performance, vol. 15, no. 1, pp. 130-138, 2006.
[25] T. Sidhu, S. Prakash & R. Agrawal, "Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni-and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900° C", Acta materialia, vol. 54, no. 3, pp. 773-784, 2006.
[26] T. Sidhu, S. Prakash & R. Agrawal, "Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications", Materials Science, vol. 41, no. 6, pp. 805-823, 2005.
[27] C. U. Hardwicke & Y. C. Lau, "Advances in thermal spray coatings for gas turbines and energy generation: a review", Journal of Thermal Spray Technology, vol. 22, no. 5, pp. 564-576, 2013.
[28] M. Gupta, "Design of thermal barrier coatings: a modelling approach", Springer, 2015.
[29] R. Soltani, T. W. Coyle & J. Mostaghimi, "Microstructure and creep behavior of plasma-sprayed yttria stabilized zirconia thermal barrier coatings", Journal of thermal spray technology, vol. 17, no. 2, pp. 244-253, 2008.
[30] M. Planche, H. Liao & C. Coddet, "Oxidation control in atmospheric plasma spraying coating", Surface and Coatings Technology, vol. 202, no. 1, pp. 69-76, 2007.
[31] S. Bose, "High temperature coatings", 2011: Butterworth-Heinemann.
_||_