بررسی اثر مرفین و ترکیب آن با نالوکسان، مهارکننده گیرنده کانابینوئید نوع 1 (Am251)، مهار کننده فسفولیپاز (U73122) و پرگابالین بر زنده مانی سلولهای سرطانی مری YM1
محورهای موضوعی : فصلنامه زیست شناسی جانوریحسین محمدپور کارگر 1 , مهیار انصاری 2
1 - گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
2 - گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
کلید واژه: رده سلولی سرطان مری YM1, مورفین, نالوکسان, Am251, U73122, پرگابالین,
چکیده مقاله :
مشخص شده است که مورفین میتواند غیر از اثر بی¬دردی، بر تکثیر سلولهای سرطانی مری نیز اثر گذار باشد. در این مطالعه اثر مورفین، نالوکسان، به همراه مهار کننده گیرنده کانابینوئید نوع 1 (Am251)، مهار کننده فسفولیپاز (U73122) و پرگابالین بر روی رده سلولی سرطان مری YM1 ارزیابی گردید. سلولهای رده سلولی سرطان مری YM1در محیط کشت RPMI-1640 ﺣﺎﻭﻱ ۱۰ ﺩﺭﺻﺪ FBS تکثیر شدند. سپس سلولها با غلطت¬های مختلف داروها به مدت 24 ساعت تیمار شده و میزان زنده ماندن سلولها به روش MTT تعیین گردید. تجزیه و تحلیل نتایج به روش one way ANOVA و آزمون تعقیبی LSD انجام شد. بررسیهای انجام شده نشان داد که مورفین در هر سه دوز (87، 175 و350 میکرومولار) میزان بقای سلولها را به طور معنیداری کاهش می¬دهد (05/0 p <). افزودن نالوکسان 60 میکرومولار به محیط کشت نتوانست میزان بقای سلولهای سرطانی مری را تغییر دهد. اما نالوکسان به همراه مورفین350 میکرومولار میزان بقا را به طور معنیداری نسبت به گروه کنترل (001/0 p <) و گروه نالوکسان کاهش داد (02/0 p <). مهار فسفولیپاز C با U23177 با غلظت 1 میکرومولار به تنهایی (001/0 p <) و یا همراه مورفین 350 میکرومولار میزان بقای سلولها را (001/0 p <) کاهش داد. همچنین AM251 با غلظت 140 میکرومولار به تنهایی (05/0 p <) و یا همراه با مورفین 350 میکرومولار میزان بقا را (001/0 p <) کاهش داد. پر گابالین با غلظت 6 میکرومولار به تنهايي (05/0 p <) و یا همراه با مورفین 350 میکرومولار زنده¬مانی سلولها را نسبت به گروه کنترل (001/0 p <) و نسبت گروه مورفین 350 میکرومولار کاهش داد (01/0 p <). همچنین در گروهی که در معرض هر سه ترکیب قرار گرفته بود بقا سلولها بشدت (001/0 p <) کاهش یافت. نتایج نشان داد که مورفین و داروهای مورد بررسی در این مطالعه میتوانند به عنوان گزینههای بالقوه برای کاهش رشد سلولی در بیماران مبتلا به سرطان پیشرفته مری مورد استفاده قرار گیرند.
It has been found that morphine may affect proliferation of cancer cells in addition to the effect of analgesia. In this study, the effects of morphine, naloxone, cannabinoid receptor type 1 inhibitor (Am251), phospholipase C inhibitor (U73122) and pregabalin were evaluated on YM1 esophageal cancer cell line viability. Esophageal cancer cell line YM1 cells were propagated in RPMI-1640 medium containing 10% FBS. Then the cells were treated with different doses of drugs for 24 hours and the cell viability was determined by the MTT method. The results were analyzed by one-way ANOVA and LSD post hoc test. The investigation showed that morphine in all three doses (87, 175 and 350 μM) significantly reduced the viability of cells (p < 0.05). The addition of 60 μM naloxone to the culture medium could not change the survival rate of esophageal cancer cells. But naloxone along with 350 μM morphine significantly decreased the survival rate compared to the control group (p < 0.001) and the naloxone group (p < 0.02). Phospholipase C inhibitor (U23177, 1mM) alone (P < 0.001) or together with 350 µM morphine decreased cell viability (p < 0.001). Also, AM251 140 μM alone (p < 0.05) or together with morphine decreased cell viability (p < 0.001). Pergabalin with a concentration of 6 μM with 6 mM alone (p < 0.05) or together with morphine decreased cell viability compared to the control group (p < 0.001) and the ratio of the 350 μM morphine group (p < 0.01). Also, cell viability in the group that was exposed to all three compounds was greatly reduced (p < 0.001). The results showed that morphine and the drugs investigated in this study can be used as potential options to reduce cell growth in patients with advanced esophageal cancer.
1. Aghababaei Ziarati A., Ghorbani H., Hosseinalizadeh M. 2012. Evaluate the Relationship between Spatial Distribution of Esophageal and Gastric Cancers and Soil Conditions at the Golestan Province [Research(Original)]. Journal of Mazandaran University of Medical Sciences, 21(1):180-193.
2. Ajani J.A., D'Amico T.A, Bentrem D.J., Cooke D., Corvera C., Das P. Enzinger P.C., Enzler T., Farjah F., Gerdes H. 2023. Esophageal and Esophagogastric Junction Cancers, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 21(4):393-422.
3. Ayyoob K., Masoud K., Vahideh K., Jahanbakhsh A. 2016. Authentication of newly established human esophageal squamous cell carcinoma cell line (YM-1) using short tandem repeat (STR) profiling method. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(3):3197-3204.
4. Bertagnolo V., Benedusi M, Brugnoli F., Lanuti P., Marchisio M., Querzoli P., Capitani S. 2007. Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis, 28(8):1638-1645.
5. Bimonte S., Barbieri A., Cascella M., Rea D., Palma G., Del Vecchio V., Forte C.A., Del Prato F., Arra C., Cuomo A. 2018. The effects of naloxone on human breast cancer progression: in vitro and in vivo studies on MDA.MB231 cells. OncoTargets and Therapy, 11:185-191.
6. Blázquez C., Carracedo A., Barrado L., Real P.J., Fernández-Luna J.L., Velasco G., Malumbres M., Guzmán M. 2006. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 20(14):2633-2635.
7. Cai S., Sun P.H., Resaul J., Shi L., Jiang A., Satherley L.K., Davies E.L., Ruge F., Douglas-Jones A., Jiang W.G. 2017. Expression of phospholipase C isozymes in human breast cancer and their clinical significance. Oncology Reports, 37(3):1707-1715.
8. Carpi S., Fogli S., Polini B., Montagnani V., Podestà A., Breschi M.C, Romanini A., Stecca B., Nieri P. 2017. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicology in Vitro, 40:272-279.
9. Carpi S., Fogli S., Romanini A., Pellegrino M., Adinolfi B., Podestà A., Costa B., Da Pozzo E., Martini C., Breschi M.C. 2015. AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells. Anti-cancer Drugs, 26(7):754-762.
10. Carracedo A., Lorente M., Egia A., Blázquez C, García S, Giroux V, Malicet C., Villuendas R, Gironella M, González-Feria L et al. 2006. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 9(4):301-312.
11. Chen Y., Qin Y., Li L., Chen J., Zhang X., Xie Y. 2017. Morphine Can Inhibit the Growth of Breast Cancer MCF-7 Cells by Arresting the Cell Cycle and Inducing Apoptosis. Biological and Pharmaceutical Bulletin,. 40(10):1686-1692.
12. Daroun L.H.F. 2008. Cytotoxic effect of Pregabalin on U937 and Molt-4 Leukemic Cells in Vitro. Iranian Journal of Blood and Cancer, 11(1):1-5.
13. De Vry J., Jentzsch K.R.., Kuhl E, Eckel G. 2004. Behavioral effects of cannabinoids show differential sensitivity to cannabinoid receptor blockade and tolerance development. Behavioural Pharmacology, 15(1):1-12.
14. Fu L., Qin Y.R., Xie D., Hu L., Kwong D.L., Srivastava G., Tsao S.W., Guan X.Y. 2007. Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Research, 67(22):10720-10726.
15. Gach K., Szemraj J., Wyrębska A., Janecka A. 2011. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Molecular Biology Reports, 38(2):1231-1236.
16. Gach K., Wyrębska A., Fichna J., Janecka A. 2011. The role of morphine in regulation of cancer cell growth. Naunyn-Schmiedeberg's Archives of Pharmacology, 384(3):221-230.
17. Ge Z.H., Wang ZX, Yu T.L., Yang N., Sun Y., Hao C..L, Sun L.X. 2014. Morphine improved the antitumor effects on MCF-7 cells in combination with 5-Fluorouracil. Biomedecine and Pharmacotherapie, 68(3):299-305.
18. Gonzalez-Nunez V., Noriega-Prieto J.A., Rodríguez R.E. 2014. Morphine modulates cell proliferation through mir133b and mir128 in the neuroblastoma SH-SY5Y cell line. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(4):566-572.
19. Gupta K., Kshirsagar S., Chang L., Schwartz R., Law P.Y., Yee D., Hebbel R.P. 2002. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Research, 62(15):4491-4498.
20. Hatzoglou A., Bakogeorgou E., Castanas E. 1996. The antiproliferative effect of opioid receptor agonists on the T47D human breast cancer cell line, is partially mediated through opioid receptors. European Journal of Pharmacology, 296(2):199-207.
21. Jones N.P., Katan M. 2007. Role of phospholipase Cγ1 in cell spreading requires association with a β-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Molecular and Cellular Biology, 27(16):5790-5805.
22. Kenessey I., Bánki B., Márk Á., Varga N., Tóvári J., Ladányi A., Rásó E., Tímár J. 2012. Revisiting CB1 receptor as drug target in human melanoma. Pathology and Oncology Research, 18:857-866.
23. Kieffer B.L., Gavériaux-Ruff C. 2002. Exploring the opioid system by gene knockout. Progress in Neurobiology, 66(5):285-306.
24. Koyuncu T., Oğuz G., Akben S., Nas S., Ünver S. 2013. [The effects of pregabaline on postoperative pain and opioid consumption used perioperatively in patients undergoing modified radical mastectomy]. Agri: Agri (Algoloji) Dernegi'nin Yayin organidir . The journal of the Turkish Society of Algology, 25(4):169-178.
25. Leung D.W, Tompkins C., Brewer J., Ball A.., Coon M, Morris V., Waggoner D., Singer J.W. 2004. Phospholipase C δ-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells. Molecular Cancer, 3(1):1-15.
26. Li Z., Taylor C.P., Weber M., Piechan J., Prior F., Bian F., Cui M., Hoffman D., Donevan S. 2011. Pregabalin is a potent and selective ligand for α(2)δ-1 and α(2)δ-2 calcium channel subunits. European Journal of Pharmacology, 667(1-3):80-90.
27. Lin X., Wang Y.J., Li Q., Hou Y.Y., Hong M.H., Cao Y.L, Chi Z.Q., Liu J.G. 2009. Chronic high‐dose morphine treatment promotes SH‐SY5Y cell apoptosis via c‐Jun N‐terminal kinase‐mediated activation of mitochondria‐dependent pathway. The FEBS Journal, 276(7):2022-2036.
28. Lory P., Chemin J. 2007. Towards the discovery of novel T-type calcium channel blockers. Expert opinion on therapeutic targets, 11(5):717-722.
29. Mantyh P.W. 2006. Cancer pain and its impact on diagnosis, survival and quality of life. Nature reviews Neuroscience, 7(10):797-809.
30. Maradonna F., Fontana C.M. 2022. A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer. Cell Death and Disease, 13(12):1069.
31. Mathew B., Lennon F.E., Siegler J., Mirzapoiazova T., Mambetsariev N., Sammani S., Gerhold L.M., LaRiviere P.J., Chen C.T., Garcia J.G. 2011. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesthesia and Analgesia, 112(3):558-567.
32. Neacsu C., Sauer S.K. 2020. The phospholipase C inhibitor U73122 is a potent agonist of the polymodal transient receptor potential ankyrin type 1 (TRPA1) receptor channel. Naunyn Schmiedeberg's Archives of Pharmacology, 393(2):177-189.
33. Nishiwada T., Kawaraguchi Y., Uemura K., Kawaguchi M. 2019. Morphine inhibits cell viability and growth via suppression of vascular endothelial growth factor in human oral cancer HSC-3 cells. Journal of Anesthesia, 33(3):408-415.
34. Qin Y., Li L., Chen J., Tang X., Liao C., Xie Y., Xiao Q. 2012. Fentanyl inhibits progression of human gastric cancer MGC-803 cells by NF-kappaB downregulation and PTEN upregulation in vitro. Oncology Research, 20(2-3):61-69.
35. Ramer R., Wendt F., Wittig F., Schäfer M., Boeckmann L. 2022. Impact of Cannabinoid Compounds on Skin Cancer. Cancers, 14(7):1769.
36. Sergeeva M., Grishina Z., Varfolomeyev S. 1993. Morphine effect on proliferation of normal and tumor cells of immune origin. Immunology Letters, 36(2):215-218.
37. Tegeder I., Grösch S., Schmidtko A., Häussler A., Schmidt H., Niederberger E., Scholich K, Geisslinger G. 2003. G protein-independent G1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Cancer Research, 63(8):1846-1852.
38. Tuerxun H., Cui J. 2019. The dual effect of morphine on tumor development. Clinical and Translational Oncology, 21(6):695-701.
39. Vecera L., Prasil P., Srovnal J., Berta E., Vidlarova M., Gabrhelik T., Kourilova P., Lovecek M. 2023. Morphine analgesia, cannabinoid receptor 2, and opioid growth factor receptor cancer tissue expression improve survival after pancreatic cancer surgery. Cancers, 15(16):4038.
40. Yin D, Mufson RA, Wang R, Shi Y. 1999. Fas-mediated cell death promoted by opioids. Nature. 397(6716):218-218.
41. Zhang M., Chi M., Zou H., Tian S., Zhang Z., Wang G. 2017. Effects of coadministration of low dose cannabinoid type 2 receptor agonist and morphine on vanilloid receptor 1 expression in a rat model of cancer pain. Molecular Medicine Reports, 16(5):7025-7031.
42. Zhao M., Zhou G., Zhang Y., Chen T., Sun X., Stuart C., Hanley G., Li J., Zhang J., Yin D. 2009. beta-arrestin2 inhibits opioid-induced breast cancer cell death through Akt and caspase-8 pathways. Neoplasma, 56(2):108-113.