Free and Forced Vibration Analysis of Composite Laminated Conical Shells under Different Boundary Conditions Via Galerkin Method
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکآیدین نصیری راد 1 , رضا انصاری 2 , حسام روحی 3
1 - کارشناس ارشد، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد تاکستان
2 - دانشیار ، دانشکده فنی، دانشگاه گیلان
3 - دانشجوی دکتری، دانشکده فنی، دانشگاه گیلان
کلید واژه: Free vibration, Forced vibration, Galerkin Method, Conical shell, Composite laminated,
چکیده مقاله :
In this paper, natural frequency and response of forced vibration of composite laminated conical shells under different boundary conditions are investigated. To this end, equations of Donnell's thin shell theory are used as governing equations. The analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve the problem. Due to importance of boundary conditions upon the mechanical behavior of conical shells, the analysis is carried out for all possible boundary conditions. The response of forced vibration is calculated via the modal participation factor method. Numerical comparisons of free vibration with the results in the open literature are made to validate the present methodology.
در این مقاله ، فرکانس طبیعی و پاسخ ارتعاش اجباری پوستههای مخروطی کامپوزیتی چند لایه به ازای شرایط مرزی گوناگون بررسی شده اند. معادلات پوسته نازک دانل به عنوان معادلات حاکم در نظر گرفته شده ، از روش تحلیلی گلرکین برای حل معادلات حرکت در مسئله ارتعاش آزاد استفاده شده و توابع شکل مودهای تیر به عنوان توابع وزن روش گلرکین بکار گرفته شده اند که با این انتخاب میتوان شرایط مرزی گوناگون پوسته را در حل معادلات در نظر گرفت. به منظور یافتن پاسخ ارتعاش اجباری نیز روش تعیین ضرایب مشارکت مودال بکار گرفته شده است. نتایج عددی بدست آمده نشان میدهد که بیشترین مقادیر پارامتر فرکانسی در شرط مرزی FC و کمترین آن در شرط مرزی CC و FS اتفاق میافتد. افزایش تعداد لایهها و افزایش نسبت شعاع به طول منجر به افزایش پارامتر فرکانسی و افزایش نسبت ارتوتروپی منجر به کاهش پارامتر فرکانسی میشود. نتایج بدست آمده در تحلیل ارتعاش آزاد با نتایج مقالههای موجود مقایسه شده و صحت آنها مورد اطمینان میباشند
[1] Wilkins D. J., Bert C. W., Egle D. M., Free vibrations of orthotropic sandwich conical shells with various boundary conditions, Journal of Sound and Vibration, Vol. 13, 1970, pp. 211-228.
[2] Irie T., Yamada G., Muramoto Y., Free vibration of joined conical-cylindrical shells, Journal of Sound and Vibration, Vol. 95, 1984, pp. 31-39.
[3] Thambiratnam, D. P., Zhuge Y., Axisymmetric free vibration analysis of conical shells, Engineering Structures, Vol. 15, 1993, pp. 83-89.
[4] Shu C., An efficient approach for free vibration analysis of conical shells, International Journal of Mechanical Sciences, Vol. 38, 1996, pp. 935-949.
[5] Lam K. Y., Hua L., On free vibration of a rotating truncated circular orthotropic conical shell, Composites Part B: Engineering, Vol. 30, 1999, pp. 135-144.
[6] Hu H. T., Ou S. C., Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations, Composite Structures, Vol. 52, 2001, pp. 265-275.
[7] Wu C. P., Lee C. Y., Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness, International Journal of Mechanical Sciences, Vol. 43, 2001, pp. 1853-1869.
[8] Hu X. X., Sakiyama T., Matsuda H., Morita C., Vibration of twisted laminated composite conical shells, International Journal of Mechanical Sciences, Vol. 44, 2002, pp. 1521-1541.
[9] Civalek O., An efficient method for free vibration analysis of rotating truncated conical shells, International Journal of Pressure Vessels and Piping, Vol. 83, 2006, pp. 1-12.
[10] Liang S., Chen H. L., Chen T., Wang M. Y., The natural vibration of a symmetric cross-ply laminated composite conical-plate shell, Composite Structures, Vol. 80, 2007, pp. 265-278.
[11] Tripathi V., Singh B. N., Shukla K. K., Free vibration of laminated composite conical shells with random material properties, Composite Structures, Vol. 81, 2007, pp. 96-104.
[12] Civalek O., Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach, Journal of Computational and Applied Mathematics, Vol. 205, 2007, pp. 251-271.
[13] Sofiyev A. H., Korkmaz K. A., Mammadov Z., Kamanli M., The vibration and buckling of freely supported non-homogeneous orthotropic conical shells subjected to different uniform pressures, International Journal of Pressure Vessels and Piping, 86, Vol. 2009, pp. 661-668.
[14] Sofiyev A. H., The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure, Composite Structures, Vol. 89, 2009, pp. 356-366.
[15] Sofiyev A. H., Kuruoglu N., Halilov H. M., The vibration and stability of non-homogeneous orthotropic conical shells with clamped edges subjected to uniform external pressures, Applied Mathematical Modeling, Vol. 34, 2010, pp. 1807-1822.
[16]conical shells - A finite element approach, Composite Structures, Vol. 94, 2012, pp. 2188-2196.
[17] Sofiyev A. H., Kuruoglu N., Vibration analysis of FGM truncated and complete conical shells resting on elastic foundations under various boundary conditions, Journal of Engineering Mathematics, Vol. 77, 2012, pp. 131- 145.
[18]Malekzadeh P., Heydarpour Y., Free vibration analysis of rotating functionally graded truncated conical shells, Composite structures, Vol. 97, 2013, pp. 176-188.
[19]Civalek O., Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory, Composites Part B: Engineering, Vol. 45, 2013, pp. 1001-1009.
[20] Qatu M. S., Sullivan R. W., Wang W., Recent research advances on the dynamic analysis of composite shells: 2000-2009, Composite structures, Vol. 93. 2010, pp. 14-31.
[21] Soedel W., Vibrations of Shells and Plates, 2004, Marcel Dekker, Inc., New York.
[22] Loy, C. T., Lam, K. Y., Vibration of Cylindrical Shells with Ring Support, International Journal of Mechanical Sciences, Vol. 39, 1997, pp. 445–471.
[23] Irie T., Yamada G., Tanaka K., Natural frequencies of truncated conical shells, Journal of Sound and Vibration, Vol. 92, 1984, pp. 447-453.
[24] Lam K. Y., Li H., On free vibration of rotating truncated orthotropic conical shell, Composite, Vol. 30, 1999, pp. 135-44.
[25] Li F. M., Kishimoto K., Huang W. H., The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method, Mechanics Research Communications, Vol. 36, 2009, pp. 595-602
[26] Shu C., Free vibration analysis of composite laminated conical shells by generalized differential quadrature, Journal of Sound and Vibration, Vol. 194, 1996, pp. 587-604.