Optimization of Microstructure and Mechanical Properties of Al-A360 Produced by Semi-Solid Casting
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکامین کلاه دوز 1 , محسن لوح موسوی 2
1 - استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد خمینی شهر
2 - استادیار، دانشکده مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر
کلید واژه: Genetic Algorithm, Optimization, Casting, Al-A360, Natural Network,
چکیده مقاله :
Semi-Solid Casting (SSM) is a new process that could produce globular structures with mechanical properties. The cooling slope method (CLM) is a one of this process that was employed to produce the A360 feedstock. In this method, The dendritic primary phase in the conventionally cast A356 alloy has transformed into a non-dendritic one. In this paper, The molten alloy with the temperature (PT) of 670, 650, 630, 610 and 590ºC was poured on the surface of the plate where cooled with water circulation in various cooling angles (CA) and lengths (CL). After pouring, the melt which became semi-solid at the end of the plate was consequently poured into cylindrical steel mold with different mold temperatures (MT). Then, a back-propagation neural network was design to correlate the process parameters. Finally, genetic algorithm (GA) was used to optimize the process parameters. Results indicated that the hardness of samples changed with PT and MT. In the best condition with changes on PT, the hardness increased 15% and it increased 5% with changes on MT. The hardness is increased around 12% and 9% with changes on CL and CA consequently. The strength is increased around 13% and 6% with changes on CL and CA consequently.
ریختهگری نیمهجامدها، فرآیندی نوین میباشد که میتواند قطعاتی با ساختار یکنواخت کروی و با خواص مکانیکی بهبود یافته را تولید نمود. در این مقاله از روش مذابریزی بر روی سطح شیبدار برای تولید آلیاژ آلومینیم A360 استفاده شده است. با جریان یافتن مذاب بر روی این سطح و اعمال تنش، فاز اولیه شاخهای در این آلیاژ به یک فاز غیرشاخهای تبدیل میگردد. در این تحقیق تاثیر پارامترهایی از قبیل طول و زاویه سطح، دمای قالب و دمای بارریزی به عنوان متغیرهای فرآیند در نظر گرفته شده و مقادیر سختی و استحکام آلیاژ بر اساس تغییرات در پارامتر اندازه دانه مورد محاسبه قرار میگیرد. در مرحله بعد، رابطه بین ورودی و خروجیهای فرآیند با استفاده از شبکه عصبی به دست میآید. در نهایت رابطه به دست آمده با استفاده از الگوریتم ژنتیک بهینه میشود. نتایج نشان میدهد که با تغییر در دمای بارریزی و دمای قالب، سختی نمونهها نیز تغییر میکند. به طوریکه با تغییر دمای بارریزی میزان 12% افزایش و با تغییر دمای قالب به میزان 5%، سختی افزایش مییابد. همچنین طول و زاویه سطح شیبدار نیز به ترتیب تاثیر 12% و 9% در مقدار افزایش سختی و 13% و 6% در میزان افزایش استحکام دارد.
[1] Chou H.N., Govender G., Ivanchev L., “Opportunities and challenges for use of SSM forming in the aerospace industry”, TTP, solid state phenomena, Vol. 116-117, 2006, pp. 92-95.
[2] Jaffari M.R., Zebarjad S.M., Kolahan F., “Simulation of A356 Aluminium Alloy Using finite element method”, Matertials science engineering A, 2007, pp. 454-455.
[3] Motegi T., Tanabe F., sugiura E., “Continuous casting of semisolid aluminium alloys”, Material Science Forum, vol. 1, 2002, pp. 203–208.
[4] Shiomi M., Takano D., Osakada K., Otsu M., “Forming of aluminum alloy at temperatures just below melting point”, International Journal Machine Tool Manufacture, 2003, pp. 229–235.
[5] Giordano P., Chiarmetta G., “Thixo and rheo casting: comparison on a high production volume component”, Proceedings of the 7th international conference on semisolid processing of alloys and composites, Japan, June, 2002, p. 665–70.
[6] Fan Z., “Method and apparatus for producing semisolid metal slurries and shaped components”, Revision Modify Physics, vol. 52, 1980, pp. 1–58.
[7] Fan Z., Ji S., Liv G., Zhang E., “Development of the Rheo Die Casting Process for Mg Alloys and Their components”, BCAST, Brunel Uneversity, Oxbridge, Middlesex, UB. 3PH, VK, 2005.
[8] Birol Y., “A357 thixoforming feedstock produced by cooling slope casting”, Journal of Materials Processing Technology, vol. 186, 2007, pp. 94-101.
[9] مرادیان م.، اکبری غ.ح.، بررسی تاثیر پارامترهای ریختگری بر ریزساختار Al-A357 تولید شده در حالت نیمه جامد به روش تیکسوکستینگ، چهارمین کنفرانس شکلدهی فلزات و مواد ایران، سال 1387.
[10] Haga T., Kapranos p., “Billetless simple thixoforming process”, Journal of matrial processing Technology, vol. 130-131, 2002, pp. 581-586.
[11] Garat M., Blais S., Pluchion C., Loue W.R., “Aluminum semi-solid processing from the billet to the finished part”, 5th international conference on semi-solid processing of alloys and composites, Colorado, 1998.
[12] Kjung H., Kang C.G., Jung K.D., “Control liquid segration of semi-solid aluminum alloys during intelligent compression test”, Intelligent processing and manufacturing of materials, 1999, pp. 609-703.
[13] Li H.J., Qi L.H., Han H.M. , Guo L.J., “Neural network modeling and optimization of semi-solid extrusion for aluminum matrix composites”, Journal of Materials Processing Technology, Vol 151, 2004, pp. 126–132.
[14] Jiang H., Nguyen T.H., Prud’homme M., “Optimal control of induction heating for semi-solid aluminum alloy forming”, Journal of Materials Processing Technology, vol. 189, 2007, pp. 182-191.
]15[ نیلی احمد آبادی م.، مهرآرا ح.، آشوری ص.، غیاثینژاد ج.، “فرآوری نیمهجامد آلیاژ آلومینیم 356 Aبه روش سطح شیبدار؛ بررسی تاثیر دمای سطح و دمای بارریزی به کمک آلیاژ 356 A"، مجله ریختهگری، سال بیست و هفتم، شماره 88، پاییز 1386.
[16] Park J.H., Choi J.C., Kim Y.H., Yoon J.M., “A study of the optimum reheating process for A356 Alloy in semi-solid forging”, International Journal of Advanced Manufacturing Technology, vol. 20, no. 4, 2002, pp. 277-283.
[17] Nourouzi S., Ghavamodini S.M., Baseri H., Kolahdooz A., Botkan M., “Microstructure evolution of A356 aluminum alloy produced by cooling slope method”, Advanced Materials Research, Vol. 402, 2012, pp. 272-276.
[18] Hosseini S.S., Nourouzi S., Hosseinipour S.J., Kolahdooz A., “Effect of slope plate variable and pouring temperature on semi-solid microstructure of A356 aluminum alloy”, steel metal Research, 2012, pp. 779-782.