مقایسه روش¬های شبکه عصبی مصنوعی و رگرسیونی در پیش بینی مدول تغییرشکل پذیری سنگ با استفاده از آزمون دیلاتومتری
محورهای موضوعی : انفورماتیک محیط های متخلخلمنوچهر حسینی 1 , روزبه دبیری 2 , لاریسا خدادادی 3
1 - کارشناسی ارشد مهندسی عمران-ژئوتکنیک، گروه مهندسی عمران، واحد مراغه، دانشگاه آزاد اسلامی، مراغه، ایران
2 - گروه مهندسی عمران، واحد تبریز، دانشگاه ازاد اسلامی، تبریز، ایران
3 - استادیار، گروه مهندسی برق، واحد تبریز، دانشگاه ازاد اسلامی، تبریز، ایران
کلید واژه: مدول تغییر شکل پذیری, دیلاتومتری, سنگ, شبکه عصبی, تحلیل رگرسیونی,
چکیده مقاله :
در علم مهندسی ژئوتکنیک مدول تغییر شکل پذیری(Em) در واقع نسبت تنش به کرنش منتاظر آن میباشد. کاربرد این مدول در زمینههای سد سازی ، تونل سازی ، راه سازی وغیره میباشد. امروزه روشهای مختلفی برای بدست آوردن مدول شکل پذیری وجود دارد از جمله آنها می¬توان به آزمایشهای برجا (صفحه بارگذاری- دیلاتومتری)، آزمونهای آزمایشگاهی و روابط تجربی اشاره نمود. همچنین روش¬های مختلفی به منظور پیشبینی و تعیین روابط بین چندین پارامتر مختلف وجود دارد که می¬توان به تحلیل رگرسیونی و شبکه عصبی مصنوعی اشاره نمود. هدف اصلی در تحقیق حاضر، ارائه یک رابطه جدید به منظور پیش بینی مدول تغییر شکل پذیری سنگ¬ها قبل از انجام آزمایش دیلاتومتری، با کمترین خطا است. نتایج مطالعات نشان داده است مدل سازی شبکه عصبی نسبت به تحلیل رگرسیونی در تمامیمتغیرهای مستقل ورودی از کارآمدی بالایی برخوردار بوده و تنها با ورودی پارامترQ به معادله مورد نظر تحلیل رگرسیونی سطح اطمینان بالاتری دارد. همچنین با مقایسه این دو روش مشخص گردید هر چقدر تعداد متغیر ورودی بیشتر باشد شبکه عصبی بهتر عمل میکند.
In geotechnical engineering, the modulus of deformation (Em) is actually the ratio of stress to strain. The application of this module is in the fields of dam construction, tunnel construction, road construction, etc. Today, there are various methods to obtain the deformation modulus, among which we can refer to in-situ tests (loading plate-dilatometry), laboratory tests, and practical relationships. Also, there are different methods to predict and determine the relationships between several different parameters, which can be referred to regression analysis and artificial neural network. The main goal of the present research is to provide a new relationship to predict the modulus of deformation of rocks before performing the dilatometry test with the least error. The results of the studies have shown that neural network modeling is more efficient than regression analysis in all input independent variables, and it has a higher level of confidence only with the input of Q parameter to the regression analysis equation. Also, by comparing these two methods, it was found that the more the number of input variables, the better the neural network works.
1- ASTM D6635, (2001), Standard Test Method for Performing the Flat Plate Dilatometer, Annual book of ASTM standards.
2- هاشمی، س، اصغري، ح.، (1387)، بررسی رفتار تودههای سنگ در آزمایش دیلاتومتري، دومين كنفرانس ملي نيروگاههای آبي كشور، 146 - 131.
3- بشري ، ع.، مجدي، ع.، و غلامي، غ.، (1388)، تعيين مدول تغيير شكل پذيري توده سنگ مهمترين فاكتور طراحي سد، مجموعه مقالات دومين همايش ملي سد سازي. دانشگاه آزاد اسلامي واحد زنجان.
4- Taherian, A., Asari, M., and Falahat Pishe, A., (2006), “Geoengineering aspects of the Lavarak hydro-power cavern in very soft rock, Iran”, International Association for Engineering Geology Conference (IAEG), Nottingham, UK.
5-Hashemi, S., (2008), “A comparison of different in situ testing methods for measuring deformability characteristics of rock masses in Roudbar Lorestan, Iran” The 3rd International Conference on Site Characterization, Taipei, Taiwan.
6- Faramarzi, L., (2008), “Interpretation of plate loading test and dilatometer borehole loading test results”, 3rd International Conference on Site Characterization, Taipei, Taiwan.
7- Gharouni-Nik M., (2008), “Comparison of the results of FDT and PLT in determining deformability modulus of the rock mass in Chamshir dam site in Iran”, The 3rd International Conference on Site Characterization, Taipei, Taiwan.
8-8- Bieniawski, Z. T., (1973), Engineering classification of rock masses, Transactions of the South African Institution of Civil Engineers.
9-Serafim, J. L., and Pereira, J. P., (1983), “considerations on geomechanical classification of Bieniawski”, in proceedings of the symposium on engineering geology and underground openings. Portugal: Lisboa,pp 1133-1144.
10-Gokceoglu, C., Sonmez, H. and Kayabasi, A., (2003), “Predicting The Deformation Moduli of Rock Masses”, International Journal of Rock Mechanics & Mining Sciences, 40, 701–710.
11-Kayabasi, A., and Gokceoglu, C., (2006), “Estimating the deformation modulus of rock masses”, International Journal of Rock Mechanics & Mining Sciences , 40, 55-63.
12-Hoek, E., and Diderichs, M. S., (2006), “Empirical Estimation of Rock Mass Modulus”, International Journal of Rock Mechanics & Mining Sciences, 43, 203–215.
13-Sanei, M., and Faramarzi, L., (2014), “Empirical Development of the Rock Mass Deformation Modulus”, Journal of Geological Resource and Engineering, 2, 55-67.
14-Hoseini, M., and Dabiri, R., 2015, “prediction of modulus of deformation based on dilatometry test with using neural network analysis”, International Conference on Architecture, Urbanism, Civil Engineering, Art, Environment, Future Horizons & Retrospect, ICAUCAE 2015, 16 Novamber 2015, Tehran, Iran, Institute of Art and Architecture (SID).
15- Grabar, K., Jug, J., Bek, A., and Strelec, S., (2024), “Comparison of the Piezocone Penetrometer (CPTU) and Flat Dilatometer (DMT) Methods for Landslide Characterisation”, Geoscience, 14(3), https://doi.org/10.3390/geosciences14030064.