اثرتنش خشکی روی کارایی باکتریهای ریزوبیومی (Rhizobium leguminosarum) همزیست باقلا (Phaseoulus vulgaris) رقم برکت
محورهای موضوعی : تنش
1 - بخش تحقیقات خاک وآب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران،
کلید واژه: باقلا, ریزوبیوم لگمینوزارم, کارآیی تثبیت نیتروژن, تنش خشکی,
چکیده مقاله :
به منظور بررسی اثر تنش خشکی روی برخی از پارامترهای رشدی و شاخص گرهزایی، کارایی همزیستی جدایههای ریزوبیومی آزمایشی در شرایط کنترل شده گلخانه در قالب طرح کامل تصادفی با 21 جدایه ریزوبیومی، یک تیمار شاهد منفی (بدون باکتری ریزوبیومی) و یک تیمار شاهد مثبت (بدون باکتری همراه با کود نیتروژنی به میزان 70 میلیگرم بر کیلوگرم از منبع اوره) و 3 تکرار در سال 1393 انجام شد. سطوح مختلف تنش خشکی شامل خشکی در دو سطح S0 (100 % ظرفیت مزرعهای (شاهد یا بدون تنش))، S3 (55% ظرفیت مزرعهای (تنش شدید)) که با افزودن غلظتهای مختلف صفر و 310 گرم در لیتر پلی اتیلن گلیکول 6000 (PEG) به محلول غذایی بعد از یک هفته از سبز شدن گیاهچه¬ها اعمال شد. نتایج تجزیههای آماری نشان داد که تنش خشکی اثرکاهشی معنیداری روی وزن خشک اندام هوایی، محتوای آب اندام هوایی، مقدار نیتروژن، کارایی همزیستی جدایههای ریزوبیومی و شاخص گرهزایی داشت. گیاهان در شرایط تنش خشکی توانایی تشکیل گرههای جدید را از دست میدهند. گرهها نقش مهمی در رشد و توسعه گیاهان دارند و کاهش شاخص گرهزایی نشانگر کاهش توانایی گیاه در تولید گرههای جدید و رشد فعال است. بهطور کلی، نتایج نشان میدهد که تنش خشکی تأثیر منفی و قابل توجهی بر رشد و توسعه گیاهان، آبرسانی، تغذیه، همزیستی با باکتریهای ریزوبیومی و تشکیل گرههای جدید دارد. این نتایج میتوانند در درک بهتر اثرات تنش خشکی بر عملکرد گیاهان و ارائه راهکارهای مناسب برای مدیریت آب در کشاورزی مفید باشند.
In order to investigate the effect of drought stress on some growth parameters and nodulation index, the symbiotic efficiency of rhizobial isolates an experiment in controlled greenhouse conditions in the form of a completely randomized design with 21 rhizobial isolates, a negative control treatment (without rhizobial bacteria) and a control treatment Positive (no bacteria with nitrogen fertilizer at the rate of 70 mg/kg from urea source) and 3 repetitions were done in 2013. Different levels of drought stress including drought in two levels S0 (100% of field capacity (control or no drought stress)), S3 (55% of field capacity (severe stress)), which by adding different concentrations of zero and 310 grams per liter of polyethylene glycol 6000 (PEG) was applied to the nutrient solution after one week of seedling germination. The results of statistical analyzes showed that drought stress had a significant reduction effect on shoot dry weight, shoot water content, nitrogen content, symbiotic efficiency of rhizobial isolates and nodulation index.
Abdi, H., Bihamta, M., Azizof. E., and Chogan, R. (2013). Investigating the levels of drought stress caused by polyethylene glycol (PEG 6000) on the components of seed rejuvenation and its relationship with drought tolerance indices in promising varieties and lines of bread wheat (Triticum aestivum L.) Iranian Agricultural Research, 14(4): 582-596.
Alam, T., and Najam, L. (2022). Faba-Bean Antioxidant and Bioactive Composition: Biochemistry and Functionality. In Faba Bean: Chemistry, Properties and Functionality, (pp. 123-162). Springer, Cham.
Alikhani, H. A., Mohammadi, L. (2009). Investigating the salinity and drought tolerance of lentil symbiotic rhizobial isolates in rainfed conditions. Plant production technology, 10(1): 59-68.
Alizadegan, A., Hosseini Sarqin, S., and Jameei, R. (2014). investigating the effect of drought stress on antioxidant compounds in fava bean plant (Vicia faba), the second scientific research conference of biology and horticultural sciences of Iran, Tehran.
Ammar, M. H, F., Anwar, E. H., El-Harty, H. M., Migdadi, S. M., Abdel-Khalik, S. A., Al-Faifi, M., and Farooq and Alghamdi S. S. (2014). Physiological and yield responses of faba bean (Vicia faba L.) drought in a Mediterranean-type Environment. J Agro Crop Sci, 201: 280–287.
Beauchamp, C. J., Kloepper, J. W., Shaw, J. J. and Chalifour, F. P. (2001). “Root colonization of faba bean (Vicia faba L.) and pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viciae in the presence of nitrate-nitrogen,” Canadian Journal of Microbiology, 47(12): 1068–1074. doi: 10.1139/cjm-47-12-1068.
Benmoussa, S., Nouairi, I., Rajhi, I., Rezgui, S., Manai, K., Taamali, W., Abbes, Z., Zribi, K., Brouquisse, R. and Mhadhbi, H. (2022). Growth Performance and Nitrogen Fixing Efficiency of Faba Bean (Vicia faba L.) Genotypes in Symbiosis with Rhizobia under Combined Salinity and Hypoxia Stresses. Agronomy, 12(3): p.606.
Bhattacharyya, P. N., and Jha, D. K. (2012). Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J Microbiol Biotechnol, 28(4): 1327-50.
Borucki, W., and Sujkowska, M. (2008). The effects of sodium chloride-salinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants. Acta Physiologiae Plantarum, 30(3): 293-301.
Burlyn, E., Michela and Merrill R. and Kaufmann (1973). The osmotic potential of polyethylene glycol 6000. Journal of Plant Physiology, 51: 914-916.
Chammakhi, C., Boscari, A., Pacoud, M., Aubert, G., Mhadhbi, H., and Brouquisse, R. (2022). Nitric Oxide Metabolic Pathway in Drought-Stressed Nodules of Faba Bean (Vicia faba L.). International Journal of Molecular Sciences, 23(21): p.13057.
Creus, C. M., Sueldo, R. J., and Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in field.Can. Journal of Botany. 82: 273–281.
Creus, C. M., Sueldo, R. J., and Barassi, C. A. (1998). Water relations in Azospirillum -inoculated wheat seedlings under osmotic stress. Canadian Journal of Botany. 76: 238–244.
Elbagory, M., El-Nahrawy, S., and Omara, A. E. D. (2022). Synergistic Interaction between Symbiotic N2 Fixing Bacteria and Bacillus strains to Improve Growth, Physiological Parameters, Antioxidant Enzymes and Ni Accumulation in Faba Bean Plants (Vicia faba) under Nickel Stress. Plants, 11(14): p.1812.
Farnia, A., Noormohammadi, Q., and Naderi, A. (2007). Effect of drought stress on nodulation and nitrogen fixation of different races of Rhizobium japonicum in soybean. A new find in agriculture. second year, 2: 132-149.
Fesenko, A. N., Provorov, N. A., Orlova, I. F., Orlov, V. P., and Simarov, B.V. (1995). Selection of Rhizobium leguminosarum bv. viceae strains for inoculation of Pisum sativum L. cultivars: analysis of symbiotic efficiency and nodulation competitiveness. Plant Soil, 172: 189–198.
Gontia-Mishra, I, Sapre, S., Sharma, A., and Tiwari, S. (2015). Effect of plant growth-promoting Bacillus sp. on growth, antioxidant enzymes and DNA content of tomato seedlings under salt stress. Springerplus, 4:130
Guo, R., Silsbury, H., and Graham, R. D. (1992). Effect of four nitrogen compounds on nodulation and nitrogen fixation in faba bean, white lupine and medic plants. Australian Journal of plant physiology, 19: 501-508.
Hafeez, F. Y., Safdar, M. E., Chaudhury, A. U., and Malik, K. A. (2004). Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Australian Journal of Experimental Agriculture, 44: 617-622.
Hansen, A. P., and Choudhary, D. K. (2017). Rhizobium Biology and Biotechnology. doi: 10.1007/978-3-319-64982-5.
Joseph, B., Patra, R. R., and Lawrence, R. (2007). “Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.),” International Journal of Plant Production, 1(2): 141–151 ST–Characterization of plant growth pro.
Khosravi, H. (2014). Investigating some physiological characteristics of Rhizobium leguminosarum bv.viciae native to Iran. Journal of Cellular and Molecular Research (Iranian Journal of Biology), 28(4): 513-523.
Laguerre, G., Louvrier, P., Allard, M. R., and Amarger, N. (2003). Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Applied and Environmental Microbiology, 69: 2276–2283.
Lalande, R., Blowaneza, P. C., Antoun, H. (1990). Symbiotic effectiveness of strains of Rhizobium leguminosarum biovar phaseoli from soils of Rawanda.Plant and Soil, 121: 41-46.
Lerki, S., and Akhgar, A. R. (2014). Effect of Sinorhizobium bacteria on growth, nodulation and nitrogen fixation in fenugreek plant. Journal of Soil Biology, 2(2): 137-148.
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., and Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv, 32(2): 429-48
Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., and Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51(4): 403-415.
Prevost, D., and Antoun, H. (2008). Root nodule bacteria and symbiotic nitrogen fixation. In: Carter MR, Gregorich EG (eds), Soil sampling and methods of analysis (2nd edn). Boca Raton: CRC Press, 379–397.
Ramos, M. L. G., Gordon, A. G., Minchin, F. R., Sprent, J. I. and Parsons, R. (1999). Effects of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (phaseolus vulgaris L.). Annals of Botany, 83(1): 57-63.
Ritchie, S. W., Nguyen, H. T., and Holaday, A. S. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci, 30: 105-111.
Saghafi, D., Alikhani, H. A., and Motsharazadeh. (2013). Investigating plant growth stimulating properties of some rhizobial bacteria isolated from Iranian soils. Journal of Soil Management and Sustainable Production, 4(2): 131-150.
Serraj, R., Sinclair, T. R., Purcell, L. E. (1999). Symbiotic N2 fixation response to drought. Journal of Experimental Botany, 50:143-155.
Somasegaran, P., and Hoben, H. (1994). Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media
Suarez, R.; Wong, A., Ramirez, M., Barraza, A., Orozco, M., Cevallos, M., Lara, M., Hernandez, G., and Iturriaga, G. (2008). Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6- phosphate synthase in rhizobia. Molecular plant microb interactions. Published by APS PRESS in cooperation with the International Society for Molecular Plant-Microbe Interactions, 21(7): 958-966.
Tahir, M., Mirza, M. S., Zaheer, A., Dimitrov, M. R., Smidt, H., and Hameed, S. et al. (2017). Synergistic Effects of Biochar and Plant Growth-Promoting Rhizobacteria on the Growth and Physiology of Oryza sativa L. Front Plant Sci, 8:162.
Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., and Muller, D. et al. (2013). Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;4:356
Weir, B. (2006). Systematics, Specificity, and Ecology of New Zealand Rhizobia (Doctoral dissertation, The University of Auckland New Zealand).