تشخیص خسارت در پلهای بزرگ دهانه با وجود چند خسارت همزمان
محورهای موضوعی : آنالیز سازه - زلزلهمحمد وحیدی 1 , آرمین عطیمی نژاد 2 , مریم فیروزی 3 , محمد هریسچیان 4
1 - گروه مهندسی عمران، واحد تهران جنوب، دانشگاه آزاد اسالمی، تهران، ایران
2 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران
3 - هیات علمی دانشگاه آزاد اسلامی واحد تهران جنوب
4 - department of civil eng, islamic Azad Uni (south Tehran branch)
کلید واژه: تشخیص خسارتچندگانه , خسارات ریز و کوچک, المان محدود طیفی, شاخص خسارت انرژیکرنشی مودال, رگرسیون بردار پشتیبان, الگوریتم ژنتیک,
چکیده مقاله :
مقاله حاضر یک روش دومرحلهای قدرتمند برای تشخیص خسارت پلهای بزرگ دهانه با مقاطع متغیر ارائه مینماید. پلها یکی از زیرساختهای اساسی در حوزه حملونقل شهری و برون شهری بوده که تشخیص خسارت به موقع درطول بهرهبرداری آن حائز اهمیت میباشد. خسارت دراین دسته از سازهها سبب اختلال درخدمترسانی درزمان بروزبلایای طبیعیخواهد شد. روش ارائه شده بر مبنای ترکیب المان محدود طیفی و شاخص خسارت انرژی کرنشی مودال و همچنین ترکیب الگوریتم ژنتیک و رگرسیون بردار پشتیبان برای تشخیص وتخمین میزان شدتخسارت میباشد. یکی از روشهای کارآمد درحوزه انتشار امواج روش المان محدود طیفی بوده که از قابلیت مدلسازی با انعطافپذیری بالا و تشخیص خسارات ریز میباشد. روشهای مبتنی بر ارتعاش بطور گسترده برای تشخیص خسارت سازهها استفاده میگردد درحالیکه شاخص خسارت انرژی کرنشی مودال از حساسیت بالاتری در تشخیص خسارت در میان دیگر روشهای مبتنی برارتعاش برخوردار است. مدل مورد تحقیق، پلکروچایلد درغرب کانادا میباشد که دارای ویژگیهای خاصی از نظرهندسی و هم از مشخصات المانهای سازهای میباشد. در این تحقیق شاخص خسارت انرژی کرنشی مودال به علت تغییر مقطع در طول شاهتیرها اصلاح گردیده است. همچنین از رگرسیون بردار پشتیبان به عنوان یک تکنیک قدرتمند در تخمین میزان شدت خسارت استفاده شده است. جهت افزایش دقت و بهبود روش تخمین میزان شدت خسارات از الگوریتم ژنتیک برای بهینهسازی پارامترهای مؤثر رگرسیون بردار پشتیبان استفاده میگردد. روش ترکیبی الگوریتم ژنتیک و رگرسیون بردار پشتیبان توانسته است به نحو مطلوبی شدت خسارات را تخمین بزند.
This paper presents a powerful two-step method for damage detection of large-span bridges with variable sections. Bridges are one of the basic infrastructures in the field of urban and suburban transportation, and timely detection of damage during its operation is important. Damage in this category of structures will cause service disruption during natural disasters. The presented method is based on the combination of spectral finite element and modal strain energy damage index, as well as the combination of genetic algorithm and support vector regression to detect and estimate the damage severity. One of the efficient methods in the field of wave propagation is the spectral finite element method, which is capable of modeling with high flexibility and detecting micro damage. Vibration-based methods are widely used to detect structural damage, while the modal strain energy damage index has a higher sensitivity in detecting damage among other vibration-based methods. The case study model is the Crowchild Bridge in Western Canada, which has special characteristics in terms of geometry and the characteristics of structural elements. In this research, the modal strain energy damage index has been modified due to the change of cross-section along the girders. Also, support vector regression has been used as a robust technique in estimation damage severity. In order to increase the accuracy and improve the damage severity estimation method, the genetic algorithm is used to optimize the effective parameters of the support vector regression. The combined method of genetic algorithm and support vector regression has been able to estimate the severity of damages in a favorable way.
[1] Eshghi, Sassan, and Mehran Seyed Razzaghi. "The behavior of special structures during the Bam earthquake of 26 December 2003." (2004): 197-207.
[2] Mosleh, Araliya, et al. "Stochastic collocation-based nonlinear analysis of concrete bridges with uncertain parameters." Structure and Infrastructure Engineering 14.10 (2018): 1324-1338.
[3] Cawley P, Adams RD. The location of defects in structures from measurements of natural frequencies. The Journal ofStrain Analysis for Engineering Design 1979; 14(2):49–57.
[4] Parloo E, Guillaume P, Overmeire MV. Damage assessment using mode shape sensitivities. Mechanical Systems and Signal Processing 2003; 17(3):499–518.
[5] Pandey AK, Biswas M. Damage detection in structures using changes in flexibility. Journal ofSound and Vibration 1994; 169(1):3–17.
[6] Shi ZY, Law SS, Zhang LM. Structural damage localization from modal strain energy change. Journal ofSound and Vibra- tion 1998; 218(5):825–844.
[7] Zhao J, DeWolf JT. Sensitivity study for vibrational parameters used in damage detection. Journal ofStructural Engineering 1999; 125(4):410–416.
[8] Duan ZD, Yan GR, Ou JP, Spencer BF. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs. Structural Control and Health Monitoring 2007; 14(2):186–196.
[9] Mahmood SMF, Haritos N, Gad E, Zhang LH. A multi-reference-based mode selection approach for the imple- mentation of NExT–ERA in modal-based damage detection. Structural Control and Health Monitoring 2014; 21(8):1137–1153.
[10] Mukhopadhyay S, Lus H, Betti R. Structural identification with incomplete instrumentation and global identifiability requirements under base excitation. Structural Control and Health Monitoring 2015; 22(7):1024–1047.
[11] Fan W, Qiao P. Vibration-based damage identification methods: a review and comparative study. Structural health monitoring. 2011;10(1):83-111.
[12] Rucevskis S, Janeliukstis R, Akishin P, Chate A. Mode shape‐based damage detection in plate structure without baseline data. Structural Control and Health Monitoring. 2016;23(9):1180-1193.
[13] Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Lab., NM (United States);1996.
[14] Kim J-T, Ryu Y-S, Cho H-M, Stubbs N. Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Engineering structures. 2003;25(1):57-67.
[15] Ooijevaar T, Loendersloot R, Warnet L, de Boer A, Akkerman R. Vibration based Structural Health
Monitoring of a composite T-beam. Composite Structures. 2010;92(9):2007-2015.
[16] Magalhães F, Cunha A, Caetano E. Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mechanical Systems and Signal Processing. 2012;28:212-228.
[17] Kim J-T, Park J-H, Lee B-J. Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Engineering Structures. 2007;29(7):1354-1365.
[18] Teughels A, De Roeck G. Structural damage identification of the highway bridge Z24 by FE model updating. Journal of Sound and Vibration. 2004;278(3):589-610.
[19] Koto Y, Konishi T, Sekiya H, Miki C. Monitoring local damage due to fatigue in plate girder bridge. Journal of Sound and Vibration. 2019;438:238-250.
[20] Huth O, Feltrin G, Maeck J, Kilic N, Motavalli M. Damage identification using modal data: Experiences on a prestressed concrete bridge. Journal of Structural Engineering. 2005;131(12):1898-1910.
[21] Caicedo JM, Dyke SJ. Experimental validation of structural health monitoring for flexible bridge structures. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control andMonitoring and of the European Association for the Control of Structures. 2005;12(3‐4):425-443.
[22] Xiong W, Kong B, Tang P, Ye J. Vibration-based identification for the presence of scouring of cable-stayed bridges. Journal of Aerospace Engineering. 2018;31(2):04018007.
[23] Komatitsch, D., Vilotte, J-P., Vai, R., Castillo-Covarrubias, J.M. and Sanchez-Sesma, F.J.The spectral element method for elastic wave equation-Application to 2-D and 3-D seismic problems.International journal for numerical methods in engineering,1999;Vol.45,pp.1139-1164.
[24] Komatitsch, Dimitri, and Jeroen Tromp. "Introduction to the spectral element method for three-dimensional seismic wave propagation." Geophysical journal international 139.3 (1999): 806-822.
[25] Dauksher, W., and A. F. Emery. "The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements." Computer methods in applied mechanics and engineering 188.1-3 (2000): 217-233.
[26] Komatitsch, Dimitri, et al. "Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles." Journal of Computational Acoustics 9.02 (2001): 703-718.
[27] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Computational Physics,1984; Vol.54, No. 3, pp. 468-488.
[28] Beskos, D. E., and G. V. Narayanan. "Dynamic response of frameworks by numerical Laplace transform." Computer Methods in Applied Mechanics and Engineering 37.3 (1983): 289-307.
[29] Maday, Yvon, and Anthony T. Patera. "Spectral element methods for the incompressible Navier-Stokes equations." IN: State-of-the-art surveys on computational mechanics (A90-47176 21-64). New York (1989): 71-143.
[30] Priolo, Enrico, José M. Carcione, and Géza Seriani. "Numerical simulation of interface waves by high‐order spectral modeling techniques." The Journal of the Acoustical Society of America 95.2 (1994): 681-693.
[31] Doebling, Scott W., et al. "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review." (1996).
[32] Komatitsch, Dimitri, and Jean-Pierre Vilotte. "The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures." Bulletin of the seismological society of America 88.2 (1998): 368-392.
[33] Doyle, James F., and James F. Doyle. Wave propagation in structures. Springer US, 1989.
[34] Dauksher, W., and A. F. Emery. "The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements." Computer methods in applied mechanics and engineering 188.1-3 (2000): 217-233.
[35] Krawczuk, Marek. "Application of spectral beam finite element with a crack and iterative search technique for damage detection." Finite Elements in Analysis and Design 38.6 (2002): 537-548.
[36] Mahapatra, D. Roy, and S. Gopalakrishnan. "A spectral finite element model for analysis of axial–flexural–shear coupled wave propagation in laminated composite beams." Composite Structures 59.1 (2003): 67-88.
[37] Nag, A., et al. "A spectral finite element with embedded delamination for modeling of wave scattering in composite beams." Composites science and Technology 63.15 (2003): 2187-2200.
[38] Kumar, D. Sreekanth, D. Roy Mahapatra, and S. Gopalakrishnan. "A spectral finite element for wave propagation and structural diagnostic analysis of composite beam with transverse crack." Finite Elements in Analysis and Design 40.13-14 (2004): 1729-1751.
[39] Kudela, Paweł, et al. "Modelling of wave propagation in composite plates using the time domain spectral element method." Journal of Sound and vibration 302.4-5 (2007): 728-745.
[40] Xu, Zhao-Dong, and Zhishen Wu. "Energy damage detection strategy based on acceleration responses for long-span bridge structures." Engineering Structures 29.4 (2007): 609-617.
[41] Kudela, Paweł, Marek Krawczuk, and Wiesław Ostachowicz. "Wave propagation modelling in 1D structures using spectral finite elements." Journal of sound and vibration 300.1-2 (2007): 88-100.
[42] Ostachowicz, Wieslaw M. "Damage detection of structures using spectral finite element method." Computers & structures 86.3-5 (2008): 454-462.
[43] محمد وحیدی؛ آرمین عظیمینژاد؛ مریم فیروزی نظامآبادی؛ محمود هریسچیان. "تشخیص و تخمین خسارات ریز و کوچک در تیرهای فولادی با استفاده از روشهای المان محدود طیفی، شاخص انرژی کرنشی مودال و رگرسیون بردار پشتیبان". مهندسی سازه و ساخت10, 1, 1402, 5-24.
[44] Razzaghi, Mehran S., et al. "Fragility assessment of RC bridges using numerical analysis and artificial neural networks." Earthquakes and Structures 15.4 (2018): 431-441.
[45] Razzaghi, Mehran S., and Alireza Mohebbi. "Predicting the seismic performance of cylindrical steel tanks using artificial neural networks (ann)." Acta Polytechnica Hungarica 8.2 (2011): 129-140.
[46] Drucker, Harris, et al. "Support vector regression machines." Advances in neural information processing systems 9 (1996).
[47] Bagchi, Ashutosh, et al. "Model-based damage identification in a continuous bridge using vibration data." Journal of Performance of Constructed Facilities 24.2 (2010): 148-158.
[48] Bagchi, Ashutosh. Updating the mathematical model of a structure using vibration data. Journal of Vibration and Control 11.12 (2005): 1469-1486.