Interactions of β-lactoglobulin with Cationic Surfactants: Spectroscopy Study
محورهای موضوعی : Physical Chemistry & Electrochemistry
1 - Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
کلید واژه: β-lactoglobulin, Cetyltrimethyl ammonium bromide, Cetyltrimethyl ammonium p-toluen sulfonate Conductivity, UV-Vis spectrophotometry, Fluorimetry,
چکیده مقاله :
The interactions of β-lactoglobulin AB in the presence of cationic surfactants such as Cetyltrimethylammonium bromide and Cetyltrimethylammonium p-Toluenesulfonate have been investigated using a variety of experimental techniques such as conductivity, UV-Vis spectrophotometry and fluorimetry. The conductivity of surfactants aqueous solutions with β-lactoglobulin shows that the cmc of cationic surfactants decreases with increasing of counterion size. The results of UV-Vis and fluorescence studies show a red shift in wavelength and an increase in absorbance and intensity of the emission maximum of protein during the interactions of surfactants with β-lactoglobulin. The results of UV-Vis also show two distinct conformational changes at pHs 6.7 and 8.0 and the cooperative character of binding at pH 2.0. The results of fluorescence studies show that the binding strength of β-lactoglobulin / surfactant complex decreases with increasing of the pH.
[1] K. P. Ananthapadmanabhan, E. D. Goddard, . Interactions of Surfactants with Polymers and Proteins, fi rst ed., CRC Press, London, 1993.
[2] A. K. Moren, A. Khan, Langmuir. 14 (1998) 6818.
[3] P. Busti, S. Scarpeci, C. A. Gtti, N. J. J. Delorenzi, J. Agric. Food Chem. 47 (1999) 3628.
[4] R. C. Lu, A. N. Cao, L. H. Lai, J. Xiao, Colloids Surf. A:Physicochem. Eng. Aspects. 278 (2006) 67.
[5] D. W. S. Wong, W. M. Camirand, A. E. Pavlath, Crit. Rev. Food Sci. Nutr. 36 (1996) 807.
[6] M. Z. Papiz, L.Sawyer, E. E. Eliopoulos, A.C. T. North, J. B. C. Findlay, R. Sivaprasadarao, T. A.
[CTAT]/BLG02004006008001000120014001600F max0100200300400pH= 6.7pH= 8.0pH= 2.0
Fig. 7: Changes of fluorescence emission maximum intensity of β-LG vs molar ratio of [CTAT]/[ BLG] in 50 mM glycine pH 2.0 and 50 mM phosphate buffer pH 6.7 and 8.0 in temperature of 298 K.
Z. Saadat / Journal of Physical Chemistry and Electrochemistry Vol.2 No.1 (2013) 5-12 11
Jones, M. E. Newcomer, P. J. Kraulis, Nature. 324 (1986) 383.
[7] S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, L. Sawyer, Structure 1997, vol. 5, p. 481.
[8] L. Sawyer, G. Kontopidis, Biochim. Biophys. Acta. 1482 (2000) 136.
[9] R. Waning, M. Paulsson, T.Nylander, B. Ninham, P. Sellers, Int. Dairy J. 8 (1998) 141.
[10] R. C. Lu, R. A. N. Cao, L. H. Lai, J. X. Xiao, J. Coll. Interface Sci. 299 (2006) 617.
[11] A. Taheri-Kafrani, E. Asgari-Mobarakeh, A.K. Bordbar, T. Haertlé, Colloids Surf.B. 75( 2010) 268.
[12] A. Taheri-Kafrani, E. Asgari-Mobarakeh, A.K. Bordbar, T. Haertlé, J. Agric. Food Chem. 56 (2008) 7528.
[13] B. Sesta, G. Gente, A. Iovino, F. Laureti, P. Michiotti, O. Paiusco, A. C.Palacios, L. Persi, A. Princi, S. Sallustio, C. Sarnthein-Graf, A. Capalbi, C. La Mesa, J. Phys. Chem. B 108 (2004) 3036.
[14] J. Frahm, S. Diekmann, A. Haase, B. Bunsenges, Phys. Chem. 84 (1980) 566.
[15] M. R. Eftink, Biophys. J. 66 (1994) 482.
[16] R. C. Lu, A. N. Cao, L.H. Lai, J. X. Xiao, Colloids and Surfaces A: Physicochem. Eng. Aspects 292 (2007) 279.
[17] A. K. Moren, K. Eskilsson, A. Khan, Colloids Surf. B: Biointerfaces 9 (1997) 305.
[18] A. K. Moren, A. Khan, J. Coll. Interface Sci. 218 (1999) 397.
[19] M. Hill, R. Briggs, J. Am. Chem. Soc. 78 (1956) 1590.
[20] H. C. Cheung, Resonance energy transfer. In: Topics in Fluorescence Spectroscopy, Lakowicz, J. R. Eds.; Plenum, New York, 1991.
[21] R. Koradi, M. Billeter, K. Wüthrich, J. Mol. Graphics Modell. 14 (1996) 51.
[22] Y. Nozaki, J. A. Reynolds, C. Tanford, J. Biol. Chem. 249 (1974) 4452.
[23] B. Y. Qin, B. M. C. Bewley, L. K. Creamer, H. M. Baker, E. N. Baker, G.B. Jameson, Biochemistry. 37 (1998) 14014.
[24] B. Y. Qin, L. K. Creamer, E. N. Baker, G. B. Jameson, FEBS Lett. 438 (1998) 272.
[25] D. Frapin, E. Dufour, T. Haertlé, J. Protein Chem. 12 (1993) 443.
[26] G. A. Manderson, M. J. Hardman, L. K. Creamer, J. Agric. Food Chem. 47 (1999) 3617.
[27] Y. Cho, C. A. Batt, L. Sawyer, J. Biol. Chem. 269 (1994) 11102.
[28] G. Palazolo, F. Rodriguez, B. Farruggia, G. Pico, N. Delorenzi, J. Agric. Food Chem. 48 (2000) 3817.
[29] R. C. Lu, J. X. Xiao, A. N. Cao, L. H. Lai, B. Y. Zhu, G. X. Zhao, Biochim. Biophys. Acta: Gen. Subj. 1722 (2005) 271.
[30] E.L. Gelamo, M. Tabak, Spectrochim. Acta, Part A: Molec. Biomolec. Spectr. 56 (2000) 2255.
[31] L.K. Creamer, Biochemistry 34 (1995) 7170.
12 Z. Saadat / Journal of Physical Chemistry and Electrochemistry Vol.2 No.1 (2013) 5-12