احیا آلومینوترمی سولفیدروی در حالت تحریک شده آسیاکاری- تاثیر نسبت مولی ZnS:Al در مخلوط مواد اولیه
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نویننیلوفر غنی کله لو 1 , نادر ستوده 2 , عباس محصل 3
1 - دانشجوی کارشناسی ارشد - دانشگاه یاسوج- دانشکده فنی و مهندسی- گروه مهندسی مواد
2 - دانشیار- دانشگاه یاسوج- دانشکده فنی و مهندسی- گروه مهندسی مواد
3 - استادیار- دانشگاه یاسوج- دانشکده فنی و مهندسی- گروه مهندسی مواد
کلید واژه: آسیاکاری مکانیکی, اسفالریت, سولفیدآلومینیم روی, ورتزیت, واکنش های MSR,
چکیده مقاله :
مخلوط های سولفیدروی-آلومینیم (ZnS-Al) با نسبت های استوکیومتری متفاوت تهیه شدند. سپس عملیات آسیاکاری نمونه ها توسط آسیای سیاره ای در زمانهای گوناگون انجام شد. نتایج نشان داد واکنش احیاآلومینوترمی سولفیدروی در شرایط آسیاکاری به تدریج پیش می رود و حتی پس از 10 ساعت نیز واکنش احیا کامل نمی شود. نشانه هایی از رخداد واکنش خود پیش روند مکانیکی (MSR) در مخلوط های سولفیدروی-آلومینیم در شرایط آسیاکاری دیده نشد. آزمونهای گرمایش همدما برای نمونه های سه ساعت آسیاکاری مخلوط های سولفیدروی-آلومینیم در اتمسفر آرگن به مدت یک ساعت انجام شد. نتایج آنالیزهای پراش اشعه ایکس آزمونهای گرمایش همدما نشان داد محصول غالب در این سیستم، فاز سولفیدآلومینیم روی (ZnAl2S4) با ساختار هگزاگونال است. این فاز اسپینل در آزمونهای گرمایش همدما برای مخلوط های سولفیدروی-آلومینیم سه ساعت آسیاکاری شده با نسبت مولی4:2ZnS:Al = به خوبی متبلور شد. اما نشانه های روشنی از فاز سولفیدآلومینیم در آنالیز اشعه ایکس مخلوط 3:2ZnS:Al= دیده نشد. بر اساس محاسبات ترمودینامیکی نرم افزارHSC و نمودار فازی سیستم ZnS-Al2S3، شرایط تشکیل فازهای محصول برای مخلوط (ZnS-Al) تشریح شد. نتایج نشان داد افزودن مقدار آلومینیم بیش از مقدار استوکیومتری تاثیر منفی در متبلور شدن فاز اسپینل ZnAl2S4 دارد. در نهایت، نتایج آزمونهای گرمایش همدما نشان داد نسبت Al/Zn و نسبت مولی سولفیدروی-آلومینیم در مخلوط اولیه اثر قابل توجهی در تشکیل فاز سولفید آلومینیم روی (ZnAl2S4) دارد.
Mixtures of zinc sulfide and aluminum (ZnS-Al) with different stoichiometric molar ratios were prepared. Then the mixtures were milled in a planetary ball mill with different times. The results indicated that aluminothermic reduction of zinc sulfide progress gradually during ball milling and the reaction does not complete after 10 hours milling. The traces of mechanically induced self - sustaining reaction (MSR) did not observe in the zinc sulfide-aluminum mixtures induced ball milling. The 3 hours milled mixtures of ZnS-Al were heated isothermally under flow of argon atmosphere for one hour. The XRD analysis of the isothermal heated samples indicated that hexagonal zinc aluminum sulfide, (ZnAl2S4), is the major product. The spinel phase (ZnAl2S4) was well crystallized after isothermal heating of 3 hours milled sample in the zinc sulfide-aluminum mixtures with molar ratio of 4:2. However, no traces of aluminum sulfide phase observed in the XRD patterns of milled mixture ZnS-Al with molar ratio of 3:2. The possibility formation of product phases was explained using HSC software of thermodynamic assessments and phase diagram of ZnS-Al2S3 system. The results showed that addition of aluminum more than of stoichiometric ratio has negative effect on the crystallization of ZnAl2S4 spinel phase. Finally, the results of isothermal heated samples showed that Al/Zn ratio and molar ratio of zinc sulfide-aluminum in the initial mixtures have significant effect on the formation of zinc aluminum sulfide (ZnAl2S4) phase.
References:
1-G.B. Schaffer and P.G. McCormick, “Reduction of metal oxides by mechanical alloying”, Applied Phyicss Letters, Vol. 55, pp.45–46, 1989.
2-C. Suryanarayana, “Mechanical alloying and milling”, Progress Materials Science, Vol. 46, pp.1-184, 2001.
3-C.Araujo-Andrade, F.J. Espinoza-Beltran, S. Jimenez-Sandoval and J. Gonzalez-Hernandez, “Synthesis of nanocrystalline Si particles from a solid-state reaction during a ball-milling process”, Scripta Materialia, Vol. 49, pp.773–778, 2003.
4-T.Venugopal, K. Prasad Rao and B.S. Murty “Synthesis of copper–alumina nanocomposite by reactive milling”, Materials Science and Engineering A Vol.393, pp.382–386, 2005.
5-L.Takacs, P. Balaz and A.R. Torosyan “Ball milling-induced reduction of MoS2 with Al”, Journal of Materials Science, Vol. 41, pp.7033–7039, 2006.
6-V.Udhayabanu, V.Singh and B.S. Murty, “Mechanical activation of aluminothermic reduction of NiO by high energy ball milling”, Journal of Alloys and Compounds, Vol. 497, pp.142–146, 2010.
7-N.Setoudeh and N.J. Welham (2011) “Ball milling induced reduction of SrSO4 by Al”, International Journal of Minerals Processing, Vol. 98, pp.214–218, 2011.
8-N.Setoudeh and N.J. Welham Mechanochemical reduction of SrSO4 by Mg, International Journal of Minerals Processing, Vol. 104‑105, pp.49–52, 2012.
9-Ju-Kwon Lee and In-Jin Shon,” Mechanochemical synthesis and fast low-temperature consolidation of nanostructured Ni-ZrO2 composite and its mechanical properties”, Materials Transactions, Vol. 56 (1), pp.171-174, 2015.
10-N.Setoudeh, M.H. Paydar and M.Sajjadnejad “Effect of high energy ball milling on the reduction of nickel oxide by zinc Powder”, Journal of Alloys and Compounds, Vol. 623, pp.117–120, 2015.
11-J.Temuujin, N. Setoudeh and N.J. Welham “Comparative study of mechanical activation of molybdenite (MoS2) with and without magnesium (Mg) addition”, Mongolian Journal of Chemistry, Vol. 16 (42), pp.30-33, 2015.
12-N. Setoudeh, C.Zamani and M. Sajjadnejad, ”Mechanochemical Synthesis of Nanostructured MgxNi1-xO Compound by Mg-NiO Mixture”, Journal of Ultrafine Grained and Nanostructured Materials, Vol. 50, No.1, pp. 51-59, 2107.
13-نادر ستوده، "تاثیر فرآیند فعالسازی مکانیکی در مخلوط آلومینا-زیرکن بر واکنش تشکیل مولیت-زیرکونیا"، مجله مواد نوین، جلد 2،شماره 3، ص.27-38، بهار1391.
14-نادر ستوده، محمد علی عسکری زمانی و عباس محصل،"تاثیر فرآیند آسیاکاری مکانیکی بر احیا کربوترمیک زیرکن، مجله مواد نوین، جلد 3، شماره 3،ص. 99-89، بهار 1392.
15- نادر ستوده،"تاثیر آسیاب کاری پر انرژی روی دمای تشکیل فازهای محصول در سیستم آلومینیم-آلومینا-زیرکن" مواد پیشرفته در مهندسی، سال ۳۲ ، شمارة ٢، ص. 89-77، پاییز 1392.
16-L.Takacs, “Self‑sustaining reactions induced by ball milling”, Progress in Materials Science, Vol.47, pp.355–414, 2002.
17-B.N.Akhgar and P. Pourghahramani, “Mechanochemical reduction of natural pyrite by aluminum and magnesium”, Journal of Alloys and Compounds, Vol.657, pp.144-151, 2016.
18-N.Setoudeh, and N. J. Welham, “Metallothermic reduction of zinc sulfide induced by ball Milling”, Journal of Materials Science, Vol.52, pp. 6388–6400, 2017.
19-C.S.Tiwary, S. Saha, P. Kumbhakar and K. Chattopadhyay, ”Observation of combined effect of temperature and pressure on cubic to hexagonal phase transformation in ZnS at the nanoscale”, Crystal Growth and Design, American Chemistry Society, Vol. 14, pp. 4240−4246, 2014.
20-Hua Tong, Ying-Jie Zhu, Li-Xia Yang, Liang Li, Ling Zhang, Jiang Chang, Li-Qiong An and Shi-Wei Wang, “Self-Assembled ZnS nanostructured Spheres: Controllable crystal phase and morphology”, Journal of Physical Chemistry C, Vol. 111, pp. 3893-3900, 2007.
21-F.Huang F and J.F. Banfield, “Size-Dependent phase transformation kinetics in nanocrystalline ZnS”, Journal of American Chemical Society, Vol. 127, pp. 4523-4529, 2005.
22-Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis and J.Q. Xiao, ”Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals”, Journal of American Chemical Society, Vol. 126, pp. 6874-6875, 2004.
23-Chandra Sekhar Tiwary, Chandan Srivastava and Pathik Kumbhakar, “Onset of sphalerite to wurtzite transformation in ZnS nanoparticles”, Journal of Applied Physics, Vol. 110, pp. 034908, 2011.
24-H. Zhang, F. Huang, B. Gilbert, J.F. Banfield, ”Molecular dynamics simulations, Thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles”, Journal of Physical Chemistry B, Vol. 107, pp. 13051-13060, 2003.
25-HSC Chemistry for Windows, version 5.1. 1994, Outokumpu, Oy.
26-S.B.Bonsall and F.A. Hummel, “Phase equilibria in the systems ZnS-Al2S3 and ZnAl2S4-ZnIn2S4”, Journal of solid state chemistry, Vol.25, pp.379-386, 1978.
27-V.V.Ursaki, I.I. Burlakov, I.M. Tiginyanu, Y.S. Raptis, E. Anastassakis, I. Aksenov and K. Sato, “Pressure induced phase transition in spinel and wurtzite phases of ZnAl2S4 compound”, Japanese Journal of Applied Physics, Vol. 37, pp.135-140, 1998.
28-M.E. Hills, D. C. Harris and Ch. K. Lowe-Ma,“Zinc aluminum sulfide: Electron paramagnetic resonance spectroscopy and infrared transmittance”, Journal of Physics and Chemistry Solids, Vol. 48 (6), pp.501-507, 1987.
29-J.M. Wu, “Nano-sized amorphous alumina particles obtained by ball milling ZnO and Al powder mixture”, Materials letters, Vol.48, pp.324-330, 2001.
_||_