ساخت نانوکامپوزیت نیکل-کبالت-آلومینیوم/گرافن و بررسی عملکرد الکتروشیمیایی آن به عنوان ابرخازن
محورهای موضوعی : فصلنامه علمی - پژوهشی مواد نوینسمانه واحدی 1 , مرتضی ثقفی یزدی 2 , احمد رزاقیان آرانی 3
1 - کارشناس ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره)، قزوین
2 - استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره)، قزوین
3 - دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره)، قزوین
کلید واژه: نانوکامپوزیت, الکتروشیمی, گرافن, ابرخازن, هیدروترمال,
چکیده مقاله :
در این پژوهش، با بهرهگیری از روش هیدروترمال، الکترودهایی برای به کارگیری به عنوان ابرخازن ساخته شد. به کمک تغییر نسبت یونهای فلزی Al+3/Co+2/Ni+2 ، الکترود Al0.5Co0.5Ni2O4 با نسبت مولی 1:1:2 برای یونهای Al+3/Co+2/Ni+2 با بیشترین ظرفیت خازنی به دست آمد، که الکترود NiCoAl نامیده شد. با تغییر زمان (2، 5 و 20 ساعت) و دمای فرایند هیدروترمال (150 و 180 درجه سانتیگراد) عملکرد الکترودهای ساخته شده تغییر یافت و در نتیجهی آن، الکترود NiCoAl سنتز شده در دمای 150 درجه سانتیگراد برای مدت زمان 5 ساعت با ظرفیت F g-1 1473 در چگالی جریان A g-1 8 به عنوان بهترین الکترود ساخته شده معرفی شد. با افزودن گرافن به مواد سازنده الکترود، الکترود NiCoAl-rGO ساخته شده در دمای°C 150، ظرفیت بیشینه F g-1 2362 در چگالی جریان برابر A g-1 8 را از خود نشان داد. به کمک آنالیزهای ساختاری آزمون پراش اشعه X (XRD) و طیف فوریه مادون قرمز (FTIR) حضور مواد سازنده در ساختار تایید شد و با انجام آنالیز میکروسکوپ الکترونی-روبشی (FE-SEM)، ساختار نانو صفحهای و گل مانند الکترود NiCoAl و حضور گرافن در ساختار الکترود NiCoAl-rGO مشاهده شد. به منظور تشخیص چگونگی عملکرد الکتروشیمیایی، الکترودها تحت آزمونهای سیکل چرخهای (CV)، شارژ و دشارژ گالوانواستات (CD) و آزمون امپدانس الکتروشیمیایی(EIS) قرار گرفتند.
In this study, using Hydrothermal method, electrodes were synthesized to be used as supercapacitors.
Using the alteration ratio of Al+3/Co+2/Ni+2 metal ions, Al0.5Co0.5Ni2O4 electrode with a molar ratio of 1:1:2 for Al+3/Co+2/Ni+2 ions, the highest capacitance was obtained, which was called the NiCoAl electrode. With the change of time (2, 5 and 20 hours) and the temperature of the hydrothermal process (150 and 180 °C), the performance of the manufactured electrodes changed, and as a result, the NiCoAl electrode synthesized at 150 °C for a period of 5 h, the capacity of 1473 F g-1 in the current density of 8 A g-1 was obtained as the best electrode made. By adding graphene to the electrode's constituent materials, the NiCoAl-rGO electrode, synthesized at 150 °C showed a maximum capacity of 2364 F g-1 at a current density equal to 8 A g-1. With the help of structural analysis of X-ray diffraction test (XRD) and infrared spectrum (FTIR), the presence of constituent materials in the structure was confirmed, and the presence of graphene in the NiCoAl-rGO electrode structure was observed. In order to determine how electrochemical performance works, the electrodes were subjected to cycles (CV), Galvanostatic charge and discharge (CD), and electrochemical impedance (EIS) tests.
[1] م. چ. د. میرزایی، “رسوب نشانی اسپینل کبالتیت نیکل روی فوم نیکل به روش الکتروشیمیایی جریان ثابت و کاربرد ابرخازنی آن، ”مجله مواد نوین vol. 9, no. 3, pp. 39–48..
[2] B.E.ConwayV.Birss J.Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors,” J. Power Sources Vol. 66, Issues 1–2, May–June 1997, Pages 1-14, vol. 66, no. 1–2, pp. 1–14.
[3] B. D. Patrice Simon, Yury Gogotsi, “Where Do Batteries End and Supercapacitors Begin?,” Sci. Vol 343, Issue 6176 14 March 2014, vol. 343, no. 6176, pp. 1210–1211, 2014.
[4] X. Li and B. Wei, “Supercapacitors based on nanostructured carbon,” Nano Energy, vol. 2, no. 2, pp. 159–173, 2013.
[5] D. A. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, “Carbonbased composite materials for supercapacitor electrodes: a review,” J. Mater. Chem. A, vol. 5, pp. 12653–12672, 2017.
[6] A. Q. Lu, J. Chen, J. Xiao, “Nanostructured electrodes for high-performance pseudocapacitors 52 (2013) 1882e1889.,” Chem. Int. Ed., vol. 52, pp. 1882–1889, 2013.
[7] L. JiříLibich, JosefMáca, JiříVondrák, OndřejČech, MarieSed, “Supercapacitors: Properties and applications,” J. Energy Storage Vol. 17, June 2018, Pages 224-227, vol. 17, pp. 224–227, 2018.
[8] S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene Oxide ؊ MnO 2,” vol. 4, no. 5, 2013.
[9] M. A. Gaikwad, M. P. Suryawanshi, S. S. Nikam, C. H. Bhosale, J. H. Kim, and A. V. Moholkar, “Influence of Zn concentration and dye adsorption time on the photovoltaic perfor- mance of M-SILAR deposited ZnO-based dye sensitized solar cells,” J. Photochem. Photobiol. A Chem., vol. 329, pp. 246–254, 2016.
[10] Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, “Carbon nanotube- and graphene- based nanomaterials and applications in high-voltage supercapacitor: a review,” AC SC, 2018.
[11] Lokhande, C. D, Dubal, D. P, and O. Joo, “Metal oxide thin fi lm based supercapacitors,” Curr. Appl. Phys., vol. 11, no. 3, pp. 255–270, 2011.
[12] X. Wang, H. Li, H. Li, S. Lin, J. Bai, and J. Dai, “Heterostructures of Ni – Co – Al layered double hydroxide assembled on V 4 C 3 MXene for high- energy hybrid supercapacitors †,” no. Cv, pp. 24–29, 2019.
[13] X. Gao et al., “Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor,” vol. 1903879, pp. 1–12, 2019.
[14] Liu, Xiaoying, Zhang, and Yuxin, “Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors,” vol. 20, no. 46, 2018.
[15] N. Yulian, L. Ruiyi, L. Zaijun, F. Yinjun, and L. Junkang, “Electrochimica Acta High-performance supercapacitors materials prepared via in situ growth of NiAl-layered double hydroxide nanoflakes on well-activated graphene nanosheets,” Electrochim. Acta, vol. 94, pp. 360–366, 2013.
[16] H. Lee, “Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors,” Elsevier Ltd, 2015.
[17] M. Du, X. S. Yin, C. H. Tang, T. J. Huang, and H. Gong, “X,” Electrochem. acta, vol. 190, no. 521, 2016.
[18] Y. H. Xiao et al., “x,” Elechtrochemical Acta, 2017.
[19] Z. Yan, Q. Dang, Y. Lu, and Z. H. Liu, “x,” colloids Surf. A, vol. 520, no. 32, 2017.
[20] Y. Wang et al., “x,” J. Power Sources, vol. 327, pp. 221–228, 2016.
[21] M. T. and M. M. H. Maki, “X,” ACS Appl. Mater. Interfaces, vol. 7, pp. 17188–17198, 2015.
[22] Y. M. Byrappa, K., HANDBOOK OF HYDROTHERMAL TECHNOLOGY A Technology for Crystal Growth. 2001.
[23] H. Sun, L. Lin, Y. Huang, and W. Hong, “Nickel Precursor-free Synthesis of Nickel Cobalt-based Ternary Metal Oxides for Asymmetric Supercapacitor,” Electrochim. Acta, 2018.
[24] X. G. Z. J.M. Luo, B. Gao, “X,” Mater. Res. Bull., vol. 43, p. 1119, 2008.
[25] L. Mai, Yang, F. Zhao, Y. Xu, X. Xu, and L. Luo, “X,” Y. Nat. Commun, vol. 2, p. 381, 2011.
[26] R. Raccichini, A. Varzi, S. Passerini, and and B. Scrosati, “The role of graphene for electrochemical energy storage,” vol. 14, no. March, pp. 271–279, 2015.
[27] Theiss, F. L, Ayoko, G. A, Frost, and R. L, “Applied Surface Science Synthesis of layered double hydroxides containing Mg 2 + , Zn 2 + , Ca 2 + and Al 3 + layer cations by co-precipitation methods — A review,” Appl. Surf. Sci., vol. 383, pp. 200–213, 2016.
[28] G. S. Gund, D. P. Dubal, S. B. Jambure, and S. Shinde, “Ni ( OH ) 2 thin fi lms and its subsequent e ff ect on,” pp. 4793–4803, 2013.
[29] J. Xue, W. Ren, M. Wang, and H. Cui, “Synthesis of nanofiber-composed dandelion-like CoNiAl triple hydroxide as an electrode material for high-performance supercapacitor,” J. Nanoparticle Res., vol. 16, no. 12, 2014.
[30] X. Liu, Y. Zhang, X. Zhang, and S. Fu, “Studies on Me / Al-layered double hydroxides ( Me = Ni and Co ) as electrode materials for electrochemical capacitors,” vol. 49, pp. 3137–3141, 2004.
[31] P. Wang, “Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon,” Nanoscale, vol. 6, no. 6, 2014.
[32] Boruah, Misra, Buddha, and D. Abha, “Flexible Ternary Oxide based Solid-State Supercapacitor with Excellent Rate Capability,” J. Mater. Chem. A, vol. 113, pp. 62–71, 2016.
[33] C. Zheng, T. Yao, T. Xu, H. Wang, and P. Huang, “Growth of ultrathin Ni e Co e Al layered double hydroxide on reduced graphene oxide and superb supercapacitive performance of the resulting composite,” J. Alloys Compd., vol. 678, pp. 93–101, 2016.
[34] B. Bhujun, M. T. T. Tan, and A. S. Shanmugam, “Results in Physics Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications,” Results Phys., vol. 7, pp. 345–353, 2017.
[35] H. KuanXin, Z. Xiaogang, and L. Juan, “X,” Electrochim. Acta, vol. 51, p. 1289, 2006.
[36] Z. Hu, Y. Xie, Y. Wang, H. Wu, Y. Yang, and Z. Zhang, “Electrochimica Acta Synthesis and electrochemical characterization of mesoporous Co x Ni 1 − x layered double hydroxides as electrode materials for supercapacitors,” vol. 54, pp. 2737–2741, 2009.
[37] . Deng et al., “Temperature effect on the synthesis of two Ni-MOFs with distinct performance in supercapacitor,” J. Solid State Chem., p. 121026, 2019.
[38] Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, “Carbon nanotube- and graphene- based nanomaterials and applications in high-voltage supercapacitor: a review,” Carbon N. Y., 2018.
[39] X. Ma et al., “all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors, Nanoscale 9 (2017) 11765–11772,.”
[40] A. Roy, A. Ray, S. Saha, and S. Das, “A. Roy, A. Ray, S. Saha, S. Das, Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite, Int. J. Hydrogen Energy. 43 (2018) 7128–7139,” 2018.
[41] H. Dong, M. Chen, S. Rahman, H. S. Parekh, H. M. Cooper, and Z. P. Xu, “H. Dong, M. Chen, S. Rahman, H.S. Parekh, H.M. Cooper, Z.P. Xu, Engineeringsmall MgAl-layered double hydroxide nanoparticles for enhanced genedelivery, Appl. Clay Sci. 100 (2014) 66–75.,” 2014.
[42] Y. Xiao et al., “Ultrahigh energy density and stable supercapacitor with 2D NiCoAl Layered double hydroxide,” Electrochim. Acta, vol. 253, pp. 324–332, 2017.
[43] J. Qiu, “Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances,” Mater. Chem. A, vol. 1, no. 6, 2011.
_||_