بهینهسازی و مدلسازی چند متغیری تصفیه پساب روغنی پالایشگاه گاز با استفاده از کربن فعال بهعنوان یک جاذب با توان عملیاتی بالا
محورهای موضوعی : برگرفته از پایان نامه
حامد باقری
1
,
بیژن هنرور
2
,
نادیا اسفندیاری
3
,
زهرا عرب ابوسعدی
4
1 - دانشجوی دکتری گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی مرودشت، مرودشت، ایران
2 - دانشیار گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی مرودشت، مرودشت، ایران
3 - دانشیار گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی مرودشت، مرودشت، ایران
4 - دانشیار گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی مرودشت، مرودشت، ایران
کلید واژه: کربن فعال, روش سطح پاسخ, فاضلاب پالایشگاههای گاز, بهینه سازی چند متغیره,
چکیده مقاله :
مقدمه: روشهای پایه جذب برای تصفیه پسابهای نفتی شناختهشده، باصرفه اقتصادی و پربازده هستند. بااینحال، برای دستیابی به فرآیند تصفیه پربازده، فرآیند جذب باید بهینه شود. روش سطح پاسخ یک روش مناسب به دلیل بررسی برهمکنشهای پارامترها، کاهش تعداد آزمایشات، و نتیجتاً با صرفه جویی در زمان و هزینه، میباشد.
روش: سطح ویژه جاذب به عنوان یکی از مهمترین عواملی که بر بازده جذب تأثیر میگذارد، توسط BET&BJH محاسبه شد و سطح ویژهای به اندازه 897 مترمربع بر گرم را برای جاذب نشان داد. عوامل موثر بر حذف COD شامل دوز جاذب، زمان تصفیه، دما و pH با بهینهسازی چند متغیری با استفاده از نرمافزار طراحی آزمایش Design-Expert با روش سطح پاسخ (21 اجرا) برای دو نوع پساب پالایشگاه گاز بهینه شد.
یافتهها: روش حذف COD به ترتیب بازده معادل 93 درصد و 87 درصد برای پساب جمع آوری شده از خروجی و ورودی حوضچه API را نشان داد. علاوه بر این، مطالعات سینتیکی برای هر دو پساب جمعآوریشده انجام شد، که نشان داد فرآیند جذب از سینتیک مرتبه اول برای حذف COD از پساب ورودی حوضچه API و مدل مرتبه صفر برای حذف COD از خروجی حوضچه API پیروی میکند.
نتیجه گیری: فرآیند توسعهیافته پتانسیل بسیار خوبی برای تصفیه فاضلاب واقعی پالایشگاه گاز نشان داد، از این رو، نویسندگان استفاده از آن را برای این هدف در مقیاس بزرگ موکداً توصیه میکند
Introduction: Recently, adsorption-based wastewater treatment had been utilized as a cost-effective, high-throughput, and efficient method. It is reported that to reach an efficient treatment process, the adsorption process should be optimized by a reliable optimization process. In this regard, the response surface method (RSM) is a high throughput approach due to evaluating factors interactions and reducing the number of experimental runs, as well as, time- and cost-saving.
Methods: Multivariate optimization and modeling of gas refinery wastewater treatment were performed by utilizing activated carbon (AC) as a high throughput adsorbent through an adsorption mechanism. The AC was characterized by SEM, FT-IR, and XRD analysis. The specific surface area of AC as one of the most important factors that affect the adsorption yield was calculated by BET&BJH as high as 897 m2 g-1. The factors affecting the removal yield including adsorbent amount, treatment time, temperature, and pH were optimized by multivariate optimization upon a response surface method (21 runs) for two types of wastewaters of gas refineries using Design-Expert software.
Findings: At optimal experimental conditions, the method revealed an %COD removal of 93.0% and 87.0% for output and input wastewater API gravity pool, in turn. Besides, the kinetic studies were performed for both output and input wastewaters, revealing that the adsorption process followed the intraparticle diffusion kinetics for the COD removal from both output and input wastewaters API gravity pool.
1. Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 2019 Mar;17(1):145-55.
2. Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho SH, Show PL. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production. 2021 May 10;296:126589.
3. Farhadkhani M, Nikaeen M, Yadegarfar G, Hatamzadeh M, Pourmohammadbagher H, Sahbaei Z, Rahmani HR. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water research. 2018 Nov 1;144:356-64.
4. Gao Q, Xu J, Bu XH. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews. 2019 Jan 1;378:17-31.
5. Bagheria H, Honarvara B, Abbasib M, Esfandiaria N, Aboosadia ZA. Experimental evaluation of Farashband gas refinery wastewater treatment through activated carbon and natural zeolite adsorption process. DESALINATION AND WATER TREATMENT. 2021 Jun 1;225:190-202.
6. Spellman FR, Medders L, Fuller P, Graham G. Handbook of Risk and Insurance Strategies for Certified Public Risk Officers and Other Water Professionals. CRC Press; 2021 Oct 19.
7. Liu Y, Ngo HH, Guo W, Peng L, Wang D, Ni B. The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment international. 2019 Feb 1;123:10-9.
8. Del Rio‐Chanona EA, Cong X, Bradford E, Zhang D, Jing K. Review of advanced physical and data‐driven models for dynamic bioprocess simulation: Case study of algae–bacteria consortium wastewater treatment. Biotechnology and bioengineering. 2019 Feb;116(2):342-53.
9. Li Y, Li M, Xiao K, Huang X. Reverse osmosis membrane autopsy in coal chemical wastewater treatment: Evidences of spatially heterogeneous fouling and organic-inorganic synergistic effect. Journal of Cleaner Production. 2020 Feb 10;246:118964.
10. Al-Mamun MR, Kader S, Islam MS, Khan MZ. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering. 2019 Oct 1;7(5):103248.
11. Hormozi Jangi SR, Akhond M, Dehghani Z. High throughput covalent immobilization process for improvement of shelf-life, operational cycles, relative activity in organic media and enzymatic kinetics of urease and its application for urea removal from water samples. Process Biochemistry. 2020 Mar 1;90:102-12.
12. Hormozi Jangi SR, Akhond M. High throughput urease immobilization onto a new metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) for water treatment and safe blood cleaning. Process Biochemistry. 2021 Jun 1;105:79-90.
13. Hormozi Jangi SR, Davoudli HK, Delshad Y, Jangi MR, Jangi AR. A novel and reusable multinanozyme system for sensitive and selective quantification of hydrogen peroxide and highly efficient degradation of organic dye. Surfaces and Interfaces. 2020 Dec 1;21:100771.
14. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TM, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of hazardous materials. 2021 Aug 15;416:125912.
15. Zhu W, Lin Y, Kang W, Quan H, Zhang Y, Chang M, Wang K, Zhang M, Zhang W, Li Z, Wei H. An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment. Applied Surface Science. 2020 May 15;512:145717.
16. Lingamdinne LP, Koduru JR, Karri RR. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. Journal of environmental management. 2019 Feb 1;231:622-34.
17. Abdi, J., & Abedini, H. (2020). MOF-based polymeric nanocomposite beads as an efficient adsorbent for wastewater treatment in batch and continuous systems: Modelling and experiment. Chemical Engineering Journal, 400, 125862.
18. Saleh TA. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environmental Technology & Innovation. 2021 Nov 1;24:101821.
19. Moazed H, Viraraghavan T. Removal of oil from water by bentonite organoclay. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 2005 Apr;9(2):130-4.
20. Aliyu UM, El-Nafaty UA, Muhammad IM. Oil removal from crude oil polluted water using banana peel as sorbent in a packed column. Journal of Natural Sciences Research. 2015;5(2):157-62.
21. Mowla D, Karimi G, Salehi K. Modeling of the adsorption breakthrough behaviors of oil from salty waters in a fixed bed of commercial organoclay/sand mixture. Chemical Engineering Journal. 2013 Feb 15;218:116-25.
22. Weremfo A, Abassah‐Oppong S, Adulley F, Dabie K, Seidu‐Larry S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. Journal of the Science of Food and Agriculture. 2023 Jan 15;103(1):26-36.
23. Asgher M, Arshad S, Qamar SA, Khalid N. Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN Applied Sciences. 2020 May;2(5):1-1.
24. Tripathi M, Bhatnagar A, Mubarak NM, Sahu JN, Ganesan P. RSM optimization of microwave pyrolysis parameters to produce OPS char with high yield and large BET surface area. Fuel. 2020 Oct 1;277:118184.
25. Pereira LM, Milan TM, Tapia-Blácido DR. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy. 2021 Aug 1;151:106166.
26. Bansal RC, Goyal M. Activated carbon adsorption. CRC press; 2005 May 24.
27. 27.Nguyen XC, Ly QV, Nguyen TT, Ngo HT, Hu Y, Zhang Z. Potential application of machine learning for exploring adsorption mechanisms of pharmaceuticals onto biochars. Chemosphere. 2022 Jan 1;287:132203.
28. Akhond M, Hormozi Jangi SR, Barzegar S, Absalan G. Introducing a nanozyme-based sensor for selective and sensitive detection of mercury (II) using its inhibiting effect on production of an indamine polymer through a stable n-electron irreversible system. Chemical Papers. 2020 Apr;74(4):1321-30.
29. Noshadi I, Amin NA, Parnas RS. Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: optimization using response surface methodology (RSM). Fuel. 2012 Apr 1;94:156-64.
30. Zhang Y, Liu P, Jiang L, Jiangbo G, Yang X. Following performance of solid particle and liquid phases inside a hydrocyclone. International Journal of Coal Preparation and Utilization. 2021 Oct 3;41(10):693-710.
31. Chaudhary A, Sharma S, Verma A. Optimization of WEDM process parameters for machining of heat treated ASSAB’88 tool steel using Response surface methodology (RSM). Materials Today: Proceedings. 2022 Jan 1;50:917-22.
32. Zahmatkesh S, Far SS, Sillanpää M. RSM-D-optimal modeling approach for COD removal from low strength wastewater by microalgae, sludge, and activated carbon-case study mashhad. Journal of Hazardous Materials Advances. 2022 Aug 1;7:100110.
33. Wang J, Wang S, Chen C, Hu J, He S, Zhou Y, Zhu H, Wang X, Hu D, Lin J. Treatment of hospital wastewater by electron beam technology: Removal of COD, pathogenic bacteria and viruses. Chemosphere. 2022 Dec 1;308:136265.
34. Hu R, Liu Y, Zhu G, Chen C, Hantoko D, Yan M. COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. Journal of Water Process Engineering. 2022 Feb 1;45:102462.
35. Boulahbal M, Malouki MA, Canle M, Redouane-Salah Z, Devanesan S, AlSalhi MS, Berkani M. Removal of the industrial azo dye crystal violet using a natural clay: Characterization, kinetic modeling, and RSM optimization. Chemosphere. 2022 Nov 1;306:135516.
36. Gupta S, Patel P, Mondal P. Biofuels production from pine needles via pyrolysis: Process parameters modeling and optimization through combined RSM and ANN based approach. Fuel. 2022 Feb 15;310:122230.
37. Kumari B, Tiwary RK, Yadav M. Non linear regression analysis and RSM modeling for removal of Cr (VI) from aqueous solution using PANI@ WH composites. Materials Chemistry and Physics. 2022 Oct 15;290:126457.
38. Mahmodi K, Mostafaei M, Mirzaee-Ghaleh E. Detecting the different blends of diesel and biodiesel fuels using electronic nose machine coupled ANN and RSM methods. Sustainable Energy Technologies and Assessments. 2022 Jun 1;51:101914.
39. Beyan SM, Prabhu SV, Sissay TT, Getahun AA. Sugarcane bagasse based activated carbon preparation and its adsorption efficacy on removal of BOD and COD from textile effluents: RSM based modeling, optimization and kinetic aspects. Bioresource Technology Reports. 2021 Jun 1;14:100664.
40. Kermani V, Hashemabadi SH. Numerical analysis and RSM modeling of microthermal flowmeter performance. International Journal of Thermal Sciences. 2022 Sep 1;179:107626.
41. Parsaee Z, Karachi N, Abrishamifar SM, Kahkha MR, Razavi R. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model. Ultrasonics Sonochemistry. 2018 Jul 1;45:106-15.
42. Chen LC, Teo TA, Liu CL. The geometrical comparisons of RSM and RFM for FORMOSAT-2 satellite images. Photogrammetric Engineering & Remote Sensing. 2006 May 1;72(5):573-9.
43. Brown D. A mathematical model of the Gac/Rsm quorum sensing network in Pseudomonas fluorescens. Biosystems. 2010 Sep 1;101(3):200-12.
44. Mahmodi K, Mostafaei M, Mirzaee-Ghaleh E. Detecting the different blends of diesel and biodiesel fuels using electronic nose machine coupled ANN and RSM methods. Sustainable Energy Technologies and Assessments. 2022 Jun 1;51:101914.
45. Jo K, Jo Y, Suhr JK, Jung HG, Sunwoo M. Precise localization of an autonomous car based on probabilistic noise models of road surface marker features using multiple cameras. IEEE Transactions on Intelligent Transportation Systems. 2015 Jul 16;16(6):3377-92.
46. Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bulletin of the American meteorological Society. 2012 Apr;93(4):485-98.
47. Chen VC, Tsui KL, Barton RR, Meckesheimer M. A review on design, modeling and applications of computer experiments. IIE transactions. 2006 Apr 1;38(4):273-91.
48. Chen VC, Tsui KL, Barton RR, Meckesheimer M. A review on design, modeling and applications of computer experiments. IIE transactions. 2006 Apr 1;38(4):273-91.
49. Franceschini G, Macchietto S. Model-based design of experiments for parameter precision: State of the art. Chemical Engineering Science. 2008 Oct 1;63(19):4846-72.
50. Boroujerdi R, Paul R. Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. Chemosensors. 2022 Jan 24;10(2):42.
51. Mokhtar A, Abdelkrim S, Boukoussa B, Hachemaoui M, Djelad A, Sassi M, Abboud M. Elimination of toxic azo dye using a calcium alginate beads impregnated with NiO/activated carbon: Preparation, characterization and RSM optimization. International Journal of Biological Macromolecules. 2023 Feb 9:123582.
52. Fajdek-Bieda A, Perec A, Radomska-Zalas A. Application of RSM Method for Optimization of Geraniol Transformation Process in the Presence of Garnet. International Journal of Molecular Sciences. 2023 Jan 31;24(3):2689.
53. Mali P, Kamble P, Aware C, Suryawanshi S, Jadhav J. Extraction optimization of anti-Parkinson’s medication L-DOPA and bioactive compounds from Mucuna atropurpurea (Roxb.) Wight & Arn. with biomedical potential: RSM based desirability function approach. Journal of Applied Research on Medicinal and Aromatic Plants. 2023 Apr 1;34:100451.