Salt stress alters phytochemical, physio-biochemical, photosynthetic and antioxidant attributes of Satureja mutica
محورهای موضوعی : Medicinal and Herbal PlantsHoshangh Rahmati 1 , Borzou Yousefi 2
1 - Department of Agriculture, Technical and Engineering Faculty, Payam Noor University, Tehran, Iran
2 - Kermanshah Agricultural and Natural Resources Research and Education Center, Kermanshah, Iran
کلید واژه: Antioxidant activity, Essential oil, Medicinal plants, Photosynthesis, Phytochemicals, Thymol,
چکیده مقاله :
Forest savory (Satureja mutica Fisch. & C. A. Mey) is known as an oil-bearing plant which is used in the pharmaceutical, health and food industries. We studied the effect of 0, 50, 100 and150 mM NaCl on some physio-biochemical, photosynthetic and antioxidant characteristics in a greenhouse completely randomized design experiment (CRD, r = 3). Results showed that NaCl levels on average reduced the shoot dry weight, EO yield/plant, chlorophyll a, b, a+b, carotenoied and carvacrol content respectively by 40.90, 38.65, 38.39, 24.41, 34.92,444, and 63.90%. However NaCl levels on average increased leaf proline content (805.13%), leaf protein content (36.06%), SOD activity (392.98%), POD (115.52%), catalase activity (704.60%), EO percent (10.70%), p-cymene (58.06%), and thymol content (22.66%). Results confirmed that S. mutica tolerates salt less than 100 mM. Therefore, plantation of this species don’t recommend in the salty soils.
Forest savory (Satureja mutica Fisch. & C. A. Mey) is known as an oil-bearing plant which is used in the pharmaceutical, health and food industries. We studied the effect of 0, 50, 100 and150 mM NaCl on some physio-biochemical, photosynthetic and antioxidant characteristics in a greenhouse completely randomized design experiment (CRD, r = 3). Results showed that NaCl levels on average reduced the shoot dry weight, EO yield/plant, chlorophyll a, b, a+b, carotenoied and carvacrol content respectively by 40.90, 38.65, 38.39, 24.41, 34.92,444, and 63.90%. However NaCl levels on average increased leaf proline content (805.13%), leaf protein content (36.06%), SOD activity (392.98%), POD (115.52%), catalase activity (704.60%), EO percent (10.70%), p-cymene (58.06%), and thymol content (22.66%). Results confirmed that S. mutica tolerates salt less than 100 mM. Therefore, plantation of this species don’t recommend in the salty soils.
Abdelkader, Y., Perez-Davalos, L., Leduc, R., Zahedi, R.P., Labouta, H., 2023. Omics approaches for the assessment of biological responses to nanoparticles. Adv. Drug. Deliv. Rev. doi: 10.1016/j.addr.2023.114992.
Adams, R.P., 2017. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 5 online ed, Allured Pub Corp, Illinois, USA.
Ahmad, P., Umar, S., 2011. Role of Antioxidants in Plants. Studium Press, New Delhi, India.
Akhter, M.S., Noreen, S., Mahmood, S., Ashraf, M., Alsahli, A., Ahmad, A., 2021. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. J. King Saud. Univ. Sci. 33(1), 101239.
Akula, R., Ravishankar, G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6, 1720-1731.
Alipour, H., 2018. Photosynthesis properties and ion homeostasis of different pistachio cultivar seedlings in response to salinity stress. Int. J. Hort. Sci. Technol. 5, 19-29.
Assaf, M., Korkmaz, A., Karaman, Ş., Kulak, M., 2022. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South Afri. J. Bot. 144, 480-493.
Athar, H.U., Zulfiqar, F., Moosa, A., Ashraf, M., Zafar, Z.U., Zhang, L., Ahmed, N., Kalaji, H.M., Nafees, M., Hossain, M.A., Islam, M.S., El sabagh, A., Siddique, K.H.M., 2022. Salt stress proteins in plants: An overview. Front. Plant Sci. 13, 999058.
Aziz, E., AL-Amier, H., Craker, L., 2008. Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J. Herbs Spices Med. Plants 14, 77-87.
Balasubramaniam, T., Shen, G., Esmaeili, N., Zhang, H., 2023. Plants’ response mechanisms to salinity stress. Plants (Basel) 12, 2253.
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207.
Beauchamp, C., Fridovich, I., 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.
Bistgani, Z. E., Hashemi, M., Dacosta, M., Craker, L., Maggi, F., Morshedloo, M.R., 2019. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod. 135, 311-320.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Chance, B., Maehly, A.C., 1955. Assay of catalase and peroxidase. Methods Enzymol. 2, 764-775.
Dabaghian, F., Hasanpour, M., Maroufizadeh, S., Joulani, M.H., Khanavi, M. 2023. Use of medicinal plants and its association with health literacy in the general population of Iran during the COVID-19 pandemy: a web-based cross-sectional survey. J. Herbmed Pharmacol. 10(1), 31-40.
Dahanayake, J.M., Perera, P.K., Galappaththy, P., Arawwawala, M., 2020. A mini review on therapeutic potentials of Phyllanthus niruri L. Trends Phytochem. Res. 4(3), 101-108.
Dehestani Ardakani, M., Ghatei, P., Gholamnezhad, J., Momenpour, A., Fakharipour Charkhabi, Z., 2021. Improving growth and physiological chracteristics in salt stressed lantana (lantana camara Linn.) by application of exogenous salicylic acid. SAPS 31, 95-115.
Dehghan, A., Rahimmalek, M., 2018. The effect of salt stress on morphological traits and essential oil content of Iranian and foreign yarrow (Achillea millefolium L.) genotypes. JSPI 9, 23-38.
Dehghani Bidgoli, R., Azarnezhad, N., Akhbari, M., Ghorbani, M., 2019. Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L. Agric. Food Secur. 8, 2.
Dong, Y.J., Wang, W.W., Hu, G.Q., Chen, W.F., Zhuge, Y.P., Wang, Z.L., He, M.R., 2017. Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings. JSSPN 17, 554-569.
Dubey, S., Bhargava, A., Fuentes, F., Shukla, S., Srivastava, S., 2020. Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L). Not. Bot. Horti Agrobot. Cluj Napoca 48(2), 954-966.
fabriki ourang, S., Mehrabad-Pourbenab, S., 2016. The effects of drought and salt stresses on some morphological and biochemical parameters of savory (Satureja hortensis L.). Ecophytochem. J. Med. Plants 4, 23-35.
Fazeli, A., Zarei, B., Tahmasebi, Z., 2017. The effect of salinity stress and salicylic acid on some physiological and biochemical traits of black cumin (Nigella sativa L.). IJPB 9, 69-84.
Harati, E., Kashefi, B., Matinzadeh, M., 2015. Investigation reducing detrimental effects of salt stress on morphological and physiological traits of (Thymus vulgaris) by application of salicylic acid. Iran J. Plant Physiol. 5, 1383-1391.
Hernández-Adasme, C., Palma-Dias, R., Escalona, V.H., 2023. The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 9, 493.
Hosseini, S.J., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Keshavarz, H., Kazemi, S., Khalvandi, M., Pirdashti, H., Hashemi-Petroudi, S., Nicola, S., 2023. Functional quality, antioxidant capacity and essential oil percentage in different mint species affected by salinity stress. Chem. Biodivers. 20, e202200247.
Husen, A., Iqbal, M., Sohrab, S.S., Ansari, M.K.A. 2018. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric. Food Secur.7, 1-14.
Jamzad, Z., 2012. Flora of Iran, Research Institute of Forests and Rangelands Publication, Tehran, Iran.
Kasrati, A., Alaoui Jamali, C., Spooner-Hart, R., Legendre, L., Leach, D., Abbad, A., 2017. Chemical characterization and biological activities of essential oil obtained from mint timija cultivated under mineral and biological fertilizers. J. Anal. Methods Chem. 7, 6354532.
Kaur, G., Asthir, B., 2015. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 59, 609-619.
Kazeminia, M., Mehrabi, A., Mahmoudi, R., 2022. Chemical composition, biological activities, and nutritional application of Asteraceae family herbs: A systematic review. Trends Phytochem. Res. 6(3), 187-213.
Khademi Doozakhdarreh, S.F., Khorshidi, J., Morshedloo, M.R., 2022. Essential oil content and components, antioxidant activity and total phenol content of rosemary (Rosmarinus officinalis L.) as affected by harvesting time and drying method. Bull. Natl. Res. Cent. 46, 199.
Khan, M.I.R., Asgher, M., Khan, N.A., 2014. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). PPB 80, 67-74.
Kiumarzi, F., Morshedloo, M.R., Zahedi, S.M., Mumivand, H., Behtash, F., Hano, C., Chen, J.T., Lorenzo, J.M., 2022. Selenium nanoparticles (Se-NPs) alleviates salinity damages and improves phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.). Plants (Basel) 11, 1384.
Kulak, M., 2020. Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Ind. Crops Prod. 154, 112695.
Kumar, S., Abass Ahanger, M., Alshaya, H., Latief Jan, B., Yerramilli, V., 2022. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J. Biol. Sci. 29, 1337-1347.
Leschevin, M., Ismael, M., Quero, A., San Clemente, H., Roulard, R., Bassard, S., Marcelo, P., Pageau, K., Jamet, E., Rayon, C., 2021. Physiological and biochemical traits of two major Arabidopsis accessions, Col-0 and Ws, under salinity. Front. Plant Sci. 12, 639154.
Lichtenthaler, H., Wellburn, A.R., 1985. Determination of total carotenoids and chlorophylls A and B of leaf in different solvents. Biochem. Soc. Trans. 11, 591-592.
Mazandarani, M., Monfaredi, L., 2017. Evaluation of antioxidant and antimicrobial activity of Satureja mutica Fisch. & C.A.Mey. collected from North Khorasan province, Iran. MLJGOUMS 11, 23-27.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S., 2021. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11), e2100317.
Mohammadhosseini, M., Venditti, A., Flamini, G., Sarker, S.D., Kalaee, M., 2022. The genus Micromeria Benth.: An overview on ethnobotany, chemotaxonomy and phytochemistry. Trends Phytochem. Res. 6(3), 155-186.
Mohammadi, H., Hazrati, S., Parviz, L., 2023. Morphophysiological and biochemical response of savory medicinal plant using silicon under salt stress. . Ann. Univ. Mariae Curie-Skłodowska, C Biol. 2, 29-40.
Muchate, N.S., Rajurkar, N.S., Suprasanna, P., Nikam, T.D., 2019. NaCl induced salt adaptive changes and enhanced accumulation of 20-hydroxyecdysone in the in vitro shoot cultures of Spinacia oleracea (L.). Sci. Rep. 9, 12522.
Nalawade, A.S., Gurav, R.V., Patil, A.R., Patwekar, M., Patwekar, F., 2022. A comprehensive review on morphological, genetic and phytochemical diversity, breeding and bioprospecting studies of genus Chlorophytum Ker Gawl. from India. Trends Phytochem. Res. 6(1), 19-45.
Neffati, M., Marzouk, B., 2010. Salinity impact on growth, essential oil content and composition of coriander (Coriandrum sativum L.) stems and leaves. J. Essent. Oil Res. 22(1), 29-34.
Nejatzadeh, F., 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon 7(2), e05981.
Nieto, G., 2020. A review on applications and uses of thymus in the food industry. Plants (Basel) 9(8), 961.
Oprică, L., Molchan, O., Grigore, M.N., 2019. Salinity and selenium nanoparticles effect on antioxidant system and malondialdehyde content in Ocimum basilicum L. seedlings J. Exp. Molec. Biol. 19(9), 99-106.
Ounoki, R., Ágh, F., Hembrom, R., Ünnep, R., Szögi-Tatár, B., Böszörményi, A., Solymosi, K., 2021. Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var. crispa “Moroccan”). Front. Plant Sci. 12.
Parida, A.K., Das, A.B.J.E., Safety, E., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 60(3), 324-349.
Rahimi, M., Karimi, E., Nekoei, M., Mohammadhosseini, M., 2016. Hydro-distilled volatile oil constituents from the aerial parts of Satureja mutica and QSRR simulation by multiple linear regression. J. Essent. Oil-Bear. Plants 19(2), 307-320.
Ramachandra Reddy, A., Chaitanya, K.V., Jutur, P.P., Sumithra, K., 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ. Exp. Bot. 52, 33-42.
Saadatfar, A., Hossein Jafari, S., 2023. Application of 24-epibrassinolide as an environmentally friendly strategy alleviates negative effects of salinity stress in Satureja khuzistanica Jamzad. JRS 14(3), 1-9.
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M., 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2), 277.
Sahu, P.K., Jayalakshmi, K., Tilgam, J., Gupta, A., Nagaraju, Y., Kumar, A., Hamid, S., Singh, H.V., Minkina, T., Rajput, V.D., Rajawat, M.V.S., 2022. ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes. Front. Plant Sci. 13, 1042936.
Sany, H., Alharbi, B.M., Almutairi, K., Said-Al Ahl, H.A.H., 2020. Effects of NaCl on growth, essential oil and chemical composition of Plectranthus amboinicus. Plant Arch. 20, 2471-2477.
Sarker, U., Oba, S., 2020. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci. 11, 559876.
Sarmoum, R., Haid, S., Biche, M., Djazouli, Z., Zebib, B., Merah, O., 2019. Effect of salinity and water stress on the essential oil components of Rosemary (Rosmarinus officinalis L.). Agronomy 9, 214.
Sheldon, A.R., Dalal, R.C., KirchhoF,G., Kopittke, P.M., Menzies, N.W., 2017. The effect of salinity on plant-available water. Plant Soil 418, 477-491.
Shen, Z., PU, X., Wang, S., Dong, X., Cheng, X., Cheng, M., 2022. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Sci. Rep. 12, 5089.
Singh, A., Rajput, V.D., Sharma, R., Ghazaryan, K., Minkina, T. 2023. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environ. Res. 235, 116585.
Sinha, A.K., 1972. Colorimetric assay of catalase. Anal. Biochem. 47, 389-394.
Stefanakis, M.K., Giannakoula, A.E., Ouzounidou, G., Papaioannou, C., Lianopoulou, V., Philotheou-Panou, E., 2024. The effect of salinity and drought on the essential oil yield and quality of various plant species of the Lamiaceae family (Mentha spicata L., Origanum dictamnus L., Origanum onites L.). Horticulture 10, 265.
Swamy Gowda, M.R., Hirtemath, C., Singh, S., Verma, R.S., 2022. The influence of NaCl salt stress on the yield and quality of the essential oil from two varieties of rose-scented geranium (Pelargonium graveleons L’Hér.). Biochem. Syst. Ecol. 105, 104532.
Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., Mulet, J.M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 105, 306-312.
Tsusaka, T., Makino, B., Ohsawa, R., Ezura, H., 2019. Genetic and environmental factors influencing the contents of essential oil compounds in Atractylodes lancea. PLoS One 14, e0217522.
Ugalde, J.M., Fuchs, P., Nietzel, T., Cutolo, E.A., Homagk, M., Vothknecht, U.C., Holuigue, L., Schwarzländer, M., Müller-Schüssele, S.J., Meyer, A.J., 2021. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol. 186, 125-141.
Valifard, M., Mohsenzadeh, S., Kholdebarin, B., Rowshan, V., 2014. Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S. Afr. J. Bot. 93, 92-97.
Wang, Y., Ma, W., Fu, H., Li, L., Ruan, X., Zhang, X., 2023. Effects of salinity stress on growth and physiological parameters and related gene expression in different ecotypes of Sesuvium portulacastrum on Hainan Island. Front. Plant Sci. 14, 1336.
Wang, Y., Yang, M., Wei, S., Qin, F., Zhao, H., Suo, B., 2017. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci. 5, 7.
Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q., 2018. Response of plant secondary metabolites to environmental factors. Molecules 23, 762.
Yang, W., Wang, F., Liu, L.N., Sui, N., 2020. Responses of membranes and the photosynthetic apparatus to salt stress in Cyanobacteria. Front. Plant Sci. 11, 713.
Yang, Y., Guo, Y., 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New. Phytol. 217(2), 523-539.
Zarei, B., Fazeli, A., Tahmasebi, Z., 2019. Salicylic acid in reducing effect of salinity on some growth parameters of Black cumin (Nigella sativa). Plant Process and Function 8, 287-298.
Zaremanesh, H., Eisvand, H.R., Akbari, N., Ismaili, A., Feizian, M. 2021. Humic acid affects some growth parameters, chlorophyll, flavonoids, antioxidant enzymes and essential oil of Satureja khuzestanica Jamzad under salinity stress. Iran J. Plant Physiol. 11(3), 3683-3700.
Zebib, B., Merah, O., 2017. Satureja myrtifolia (Boiss. & Hohen.) Lebanese wild plant, as a resource of natural antioxidants. Trends Phytochem. Res. 1(2), 103-108.
Zhao, H., Liang, H., Chu, Y., Sun, C., Wei, N., Yang, M., Zheng, C., 2019. Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. seedlings. Hortscience 54(12), 2125-2133.
Zhao, H.Y., Wei, N., Sun, C.C., Bai, Y.L., Zheng, C.X., 2018. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings. J. Beijing For. Univ. 40, 28-41.