اثر تمرین تناوبی شدید شنا همراه با مصرف مکمل اسیدگالیک بر بیان ژن mir-205 در موشهای صحرایی مبتلا به مدل بیماری پارکینسون ناشی از رزرپین
محورهای موضوعی : کارکردهای اجرایی مغز و ورزشSomayeh Rashidfard 1 , Mehrzad Moghadasi 2 , محمد امین عدالت منش 3 , سارا حجتی 4
1 - گروه فیزیولوژی ورزشی، دپارتمان تربیت بدنی و علوم ورزشی، دانشکده هنر و معماری، دانشگاه آزاد اسلامی، واحد شیراز، شیراز، فارس، ایران
2 - Associate professor in exercise physiology, department of exercise physiology, Shiraz branch, Islamic Azad University, Shiraz, Iran
3 - دانشیار گروه زیست شناسی، دانشکده علوم پایه، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
4 - گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی واحد شیراز، شیراز، ایران
کلید واژه: بیماری پارکینسون, تمرینات شدید تناوبی, میکرو آر ان آ, شنا,
چکیده مقاله :
هدف: پژوهش حاضر با هدف بررسی اثر شش هفته تمرین تناوبی شدید شنا همراه با مصرف مکمل اسیدگالیک بر بیان ژن mir-205 در بافت هیپوکامپ موشهای صحرایی مبتلا به مدل بیماری پارکینسون انجام شد.
روش شناسی پژوهش: در این پژوهش که یک مطالعه تجربی بنیادی بود، تعداد 35 سر موش صحرایی نر از نژاد ویستار به پنج گروه کنترل سالم (7=n)، کنترل بیمار (7=n)، تمرین شنا (7=n)، مکمل اسیدگالیک (7=n) و تمرین شنا+مکمل اسیدگالیک (7n=) تقسیم شدند. پروتوکل تمرین تناوبی شدید شنا و مصرف مکمل اسیدگالیک با یک برنامه منظم به مدت شش هفته متوالی اجرا گردید. برای بررسی بیان این ژن در گروههای پژوهش، آزمون تحلیل واریانس یکراهه و دوراهه از طریق نرمافزار SPSS نسخه 26 استفاده شد. حداقل سطح معنیداری در آزمونها 05/0>p در نظر گرفته شد.
یافتهها: نتایج آزمون شاپیروویلک حاکی از طبیعی بودن توزیع دادههای ژن mir-205 بود. تحلیل واریانس یکراهه نشان داد بین هیچ کدام از گروهها، اختلاف معنیداری در میزان بیان ژن mir-205 وجود نداشت (34/0=p و21/1=F). بعلاوه، نتایج تحلیل واریانس دوراهه نیز حاکی از عدم وجود اثر متقابل بین دو فاکتور تمرین تناوبی شدید شنا و مصرف مکمل اسیدگالیک بر بیان ژن mir-205 در بافت هیپوکامپ مغز موشهای صحرایی نر مبتلا به مدل بیماری پارکینسون بود.
بحث و نتیجهگیری: بهطور کلی، میتوان گفت، تمرین تناوبی شدید شنا همراه با مصرف مکمل اسیدگالیک بر بیان ژن mir-205 در بافت هیپوکامپ مغز موشهای صحرایی نر مبتلا به مدل بیماری پارکینسون تاثیر معنیداری نداشت.
Purpose: The present study aimed to investigate the effect of six weeks of high-intensity interval swimming with Gallic acid on mir-205 gene expression in the hippocampal tissue of rats with Parkinson's disease model.
Research methodology: In this research, which was a basic experimental study, 35 male Wistar rats were divided into five groups: healthy control (n=7), diseased control (n=7), swimming (n=7), Gallic acid (n=7) and swimming+Gallic acid (n=7). The protocol of HIIT swimming and Gallic acid supplement was implemented with a regular program for six consecutive weeks. To investigate the expression of this gene in research groups, one-way and two-way ANOVA was applied through SPSS software version 26. The minimum level of significance in the tests was considered to be p<0.05.
Findings: The results of the Shapiro-Wilk test indicated the normal distribution of the mir-205 gene data. One-way ANOVA showed that there was no significant difference in the expression level of mir-205 gene between any of the groups (p=0.34 and F=1.21). In addition, the results of Two-way ANOVA indicated the absence of interaction between the two factors of HIIT swimming and Gallic acid supplementation on the expression of this gene in the hippocampal tissue of male rats with Parkinson's disease model.
Conclusion: In general, it can be said that high-intensity interval swimming with Gallic acid had no significant effect on mir-205 gene expression in the hippocampal tissue of male rats with Parkinson's disease model.
1. منصوری مع, معاضدی, پرهام, غلامعلی. اثر عصاره هیدروالکلی دارچین (Cinnamum zeylanicum) بر کاتالپسی در موشهای سوری نر مدل بیماری پارکینسون. فصلنامه زیست شناسی جانوری. 2018;10(3):65-74.
2. پارسا, شاهکلایی ر, فروزان, عراقچیان, افشاری, مرادی. مشکلات اقدامات درمانی از دیدگاه مراجعان سالمند مراکز بهداشتیدرمانی شهر همدان (مطالعهای کیفی). نشريه سالمند: مجله سالمندي ايران. 2017;12(2):146-55.
3. Aloizou A-M, Siokas V, Sapouni E-M, Sita N, Liampas I, Brotis AG, et al. Parkinson's disease and pesticides: Are microRNAs the missing link? Science of The Total Environment. 2020;744:140591.
4. Rahmani E, Ahmadi S. Role of non-coding RNAs in neurodegenerative movement disorders. Pathobiology Research. 2020;23(4):25-38.
5. Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R. The promise and challenges of developing miRNA-based therapeutics for Parkinson’s disease. Cells. 2020;9(4):841.
6. Hou J, Wang S. ROLE OF MICRORNAS IN THE PATHOGENESIS OF PARKINSON'S DISEASE. Authorea Preprints. 2022.
7. Marques TM, Kuiperij HB, Bruinsma IB, van Rumund A, Aerts MB, Esselink RA, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Molecular neurobiology. 2017;54:7736-45.
8. Chen Q, Huang X, Li R. lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. American Journal of Translational Research. 2018;10(2):563.
9. Percário S, da Silva Barbosa A, Varela ELP, Gomes ARQ, Ferreira MES, de Nazaré Araújo Moreira T, Dolabela MF. Oxidative stress in Parkinson’s disease: Potential benefits of antioxidant supplementation. Oxidative medicine and cellular longevity. 2020;2020(1):2360872.
10. Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson's disease. Experimental neurology. 2003;184(1):521-9.
11. Hemmati-Dinarvand M, Valilo M, Kalantary-Charvadeh A, Sani MA, Kargar R, Safari H, Samadi N. Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neuroscience Letters. 2019;709:134296.
12. Hantikainen E, Trolle Lagerros Y, Ye W, Serafini M, Adami H-O, Bellocco R, Bonn S. Dietary antioxidants and the risk of Parkinson disease: the Swedish National March Cohort. Neurology. 2021;96(6):e895-e903.
13. منش ع, امین م, شاهسون, رفیعی, خدابنده, الله ح. اثر اسید گالیک بر سطح افسردگی، شاخصهای استرس اکسیداتیو و سایتوکاینهای التهابی در هیپوکامپ موشهای صحرایی به دنبال مسمومیت با تریمتیلتین: یک مطالعه تجربی. مجله علمی دانشگاه علوم پزشکی رفسنجان. 2018;17(9):815-28.
14. JIANG D-Q. Protective Effects of Gallic Acid on the MPTP-Mediated Dopaminergic Neurons Damage in Parkinson's Disease. Chinese Pharmaceutical Journal. 2020:908-12.
15. رضایی, مرندی, محمد, علایی, الله ح, اسفرجانی. تأثیر ورزش در بیماری پارکینسون. مجله علوم اعصاب شفای خاتم. 2020;9(1):189-99.
16. Ji L, Steffens DC, Wang L. Effects of physical exercise on the aging brain across imaging modalities: A meta‐analysis of neuroimaging studies in randomized controlled trials. International Journal of Geriatric Psychiatry. 2021;36(8):1148-57.
17. Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson's disease. Movement Disorders. 2019;34(12):1891-900.
18. Olson J, Sheean P, Matthews L, Chitambar CR, Banerjee A, Visotcky A, et al. Circulating miRNAs as early indicators of diet and physical activity response in women with metastatic breast cancer. Future science OA. 2021;7(4):FSO694.
19. زهرایی, مقرنسی, پور ا, محمداسماعیل, فنایی, حامد. تأثیر هشت هفته تمرین شنای تداومی و تناوبی شدید بر مقادیر کمرین در بافت کبد و چربی احشایی و مقاومت به انسولین در موشهای صحرایی نر مبتلا به سندروم متابولیک. نشریه فیزیولوژی ورزش و فعالیت بدنی. 2022;15(1):33-44.
20. Goel R, Chaudhary R. Effect of daidzein on Parkinson disease induced by reserpine in rats. Brazilian Journal of Pharmaceutical Sciences. 2020;56:e18388.