کاربرد مدل STPA-BWM جهت ارزشیابی ایمنی خطوط لوله انتقال گاز میدان نفتی آذر با تکیه بر قابلیت اطمینان
محورهای موضوعی : بهداشت، ایمنی و محیط زیست
بهاره لله آهی زاده
1
,
حسن میهن پرست
2
,
سیمین دخت زینالی
3
,
فرهام امین شرعی
4
,
مجید افشار
5
1 - گروه، ایمنی، بهداشت و محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه، ایمنی، بهداشت و محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه، ایمنی، بهداشت و محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه محیطزیست، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه ازاد اسلامی، نجف آباد، ایران.
5 - گروه، ایمنی، بهداشت و محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: ارزشیابی- خط لوله - قابلیت اطمینان - ریسک - میدان نفتی آذر - STPA-BWM,
چکیده مقاله :
مقدمه: اهميت نفت و گاز در جهان از زمان اکتشاف آنها تاکنون هم از بعد توليد انرژي، هم از لحاظ تأمين مواد اوليه مورد نياز براي توليد کالاهاي صنعتي بر هيچکس پوشيده نيست. با توجه به گستردگي خطوط در مناطق مختلف تأسيساتي و یا حتي مسکوني و همچنين پتانسيل بالاي آسيبپذیري، ایمني خطوط لوله از اهميت ویژهاي برخوردار است.
مواد و روشها: در این پژوهش (مطالعه موردی شرکت راهاندازی و بهرهبرداری صنایع نفت - پروژه میدان نفتی آذر واقع در استان ایلام) به بررسي عاملهاي مربوط به آتشسوزي و انفجار در این خطوط براساس تجزیه و تحليل فرآیند تئوري سيستم یکپارچه BWM–STPA پرداخت شده است.
نتایج و بحث: پس از تکمیل شدن پرسشنامه به معیارها (ایمنی، بازرسی فنی، پدافند غیر عامل، طراحی، ساخت، تعمیر و نگهداری) وزن داده شد که مشخص شد که سوال 16 پرسشنامه مربوط به معیار بازرسی فنی دارای بیشترین وزن که میانگین آن 52/4 و سوال 9 پرسشنامه مربوط به پدافند غیر عامل دارای کمترین وزن است که میانگین آن 05/3 میباشد. بهترین معیار بازرسی فنی و بدترین معیار پدافند غیر عامل میباشد. روش BWM – STPA به طور موثر خطرات شناسایی شده را رتبهبندی میکند و نشان میدهد عامل بازرسی فنی شدیدترین خطر در خط لوله گاز است. به دنبال آن نشت در خط لوله گاز، انفجار و آتشسوزی اتفاق میافتد. کمی شدن خطرات با استفاده از روش BWM کمک شایانی در انجام اقدامات کنترلی برای اقدامات نا ایمن U3-U11-U15-U16-U17-U20 دارد، چون وزن بالاتری نسبت به بقیه دارند.
نتیجهگیری: در نتیجه 7 اقدام کنترلی (CA) و 20 اقدام کنترلی نا ایمن (UCA) و 4 سناریو شناسایی تعریف شده است. ارزیابی خطر کمی و کیفی خط لوله گاز میدان نفتی آذر مبنایی برای افزایش ایمنی و قابلیت اطمینان آن را فراهم میکند. در نتایج بدست آمده، پیشنهاد میشود که آموزشهای مداوم برای کارکنان در زمینه ایمنی و رعایت دستورالعملها ارائه شود. سیستمهای بازرسی و کنترل بهطور منظم مورد بازبینی قرار گیرند. بر روی بهبود کیفیت مواد و تجهیزات استفاده شده در خطوط انتقال گاز تمرکز شود.
Introduction: The importance of oil and gas in the world since their discovery until now both in terms of energy production and in terms of providing the raw materials needed for the production of industrial goods, is not hidden from anyone. Due to the spread of lines in various institutional or even residential areas as well as the high potential of vulnerability the safety of pipelines is of particular importance.
Materials and Methods: In this research (a case study of the oil industry startup and operation company - Azar oil field project located in Ilam province) the factors related to fire and explosion in these lines have been investigated based on the analysis of the BWM-STPA integrated system theory process.
Results and Discussion: After completing the questionnaire, weight was given to the criteria (safety, technical inspection, non-operating protection, design, construction, and maintenance) and it was found that question 16 of the questionnaire related to the technical inspection criteria has the highest weight, the average of which is 4.52 and Question 9 of the questionnaire related to non-agent defense has the lowest weight, the average of which is 3.05. The best criterion is technical inspection and the worst criterion is non-functional defense. The BWM-STPA method effectively ranks the identified risks and indicates that the technical inspection factor is the most severe risk in the gas pipeline. This is followed by a leak in the gas pipeline an explosion and a fire. Risk quantification using the BWM method is helpful in carrying out control measures for unsafe measures U3-U11-U15-U16-U17-U20, because they have a higher weight than the others.
Conclusion: As a result 7 control actions (CA) and 20 unsafe control actions (UCA) and 4 identification scenarios have been defined. Quantitative and qualitative risk assessment of Azar oil field gas pipeline provides a basis for increasing its safety and reliability. In the obtained results, it is suggested to provide continuous training for employees in the field of safety and compliance with instructions. Inspection and control systems are reviewed regularly. Focus on improving the quality of materials and equipment used in gas transmission lines
1- Adibi O, Najafpour N, Farhanieh B, Afshin H. Determination of safety distance around gas pipelines using numerical methods. International Journal of Mechanical and Mechatronics Engineering. 2018 ;3:12(2):120-4. doi: scholar.waset.org/1307-6892/10008545.
2- Ahmadzade SH, Robati M, Nikoomaram H. Environmental Risk Assessment for Gas Pipeline Construction Using the Multi-Index Compilation Decision Method (Case study: Gachsaran to Bidboland). Environmental science and technology. 2020; 22;59-74.doi : 10.22034/jest.2021.38743.4416. [In Persian].
3- Bagheri M, Badri N, Rashtchian D, Iqbalian H. Determining the safety of sour gas transmission pipelines by the method of quantitative risk assessment. Iranian Journal of Chemistry and Chemical Engineering. 2013; 32(2): 57-71. https://www.nsmsi.ir/article_6714.html. [In Persian].
4- Dwivedi R, Prasad K, Mandal N, Singh S, Vardhan M, Pamucar D. Performance evaluation of an insurance company using an integrated Balanced Scorecard (BSC) and Best-Worst Method (BWM). Decision Making: Applications in Management and Engineering. 2021 ;13;4(1):33-50.doi: 10.31181/dmame2104033d.
5- Feng Y, Gao J, Yin X, Chen J, Wu X. Risk assessment and simulation of gas pipeline leakage based on Markov chain theory. Journal of Loss Prevention in the Process Industries. 2024 ;10:105370.doi:10.1016/j.jlp.2024.105370.
6- Karami J, Karimi S. HSE Hazard Analysis in Iran Yasa Rubber Industry Using the Approach HEMP& BOW-TIE. ohhp 2019; 3 (1) :51-62. Doi: 10.18502/ohhp.v3i1.964.[ In Persian].
7- Karevan A, Nadeau S. A comprehensive STPA-PSO framework for quantifying smart glasses risks in manufacturing. Heliyon. 2024 ; 15;10(9).doi: 10.1016/j.heliyon.2024.e30162.
8- Khan S, Kaushik MK, Kumar 14.R, Khan W. Investigating the barriers of blockchain technology integrated food supply chain: a BWM approach. Benchmarking: An International Journal. 2023 ;21;30(3):713-35.. doi: 10.1108/BIJ-08-2021-0489.
9- Muniz MV, Lima GB, Caiado RG, Quelhas OL. Bow tie to improve risk management of natural gas pipelines. Process safety progress. 2018;37(2):169-75.. doi: 10.1002/prs.11901.
10- Nezir A, Sukran S, Ceyda S. A new risk assessment framework for safety in oil and gas industry: Application of FMEA and BWM based picture fuzzy MABAC. Journal of Petroleum Science and Engineering.2022;219.doi : https://doi.org/10.1016/j.petrol.2022.111059.
11- Leveson N. Engineering a Safer World Systems Thinking Applied to Safety. 9780262533690. The MIT Press;2016.
12- Parsa Rad A, Khalilzadeh M, Banihashemi SA, Božanić D, Milić A, Ćirović G. Supplier Selection in Downstream Oil and Gas and Petrochemicals with the Fuzzy BWM and Gray COCOSO Methods Considering Sustainability Criteria and Uncertainty Conditions. Sustainability. 2024;16(2):880. doi: 10.3390/su16020880.
13- RaeHaqh, Behbahani Nia, Al Agha, and Mina Makki. Applying fuzzy inference in the evaluation system of sour gas pipelines. Occupational health and safety.2023; 13(2): 345-367.doi: 20.1001.1.2251807.1402.13.2.9.8.
14- San He , Huilan Xu, Jianxiong Zhang, Peiqiang Xue. Risk assessment of oil and gas pipelines hot work based on AHP-FCE. Petroleum.2023;1:94-100. Doi : https://doi.org/10.1016/j.petlm.2022.03.006.
15- Sulaman SM, Beer A, Felderer M, Höst M. Comparison of the FMEA and STPA safety analysis methods–a case study. Software quality journal. 2019 ; 15;27:349-87.. doi: 10.1007/s10664-005-1290-x 16- Sultana S, Okoh P, Haugen S, Vinnem JE. Hazard analysis: Application of STPA to ship-to-ship transfer of LNG. Journal of Loss Prevention in the Process Industries. 2019;60:241-52. doi: 10.1016/j.jlp.2019.04.005.
17- Wafia B, Mounira R, , Yiliu L, Mohammed Salah M. Comparative Study of STPA and Bowtie Methods: Case of Hazard Identification for Pipeline Transportation. ASM International. 2020;20:2003-2016. Doi: https://doi.org/10.1007/s11668-020-01010-9.
18- Wang W, Zhang Y, Li Y, Hu Q, Liu C, Liu C. Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks. Reliability Engineering & System Safety. 2022 ;218:108150.. doi: 10.1016/j.jlp.2024.105370.
19- Wallenius J, Dyer J, Fishburn P, Steuer R, Zionts S, Deb K. Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead. Management Sciences.2008;doi: DOI:10.1287/MNSC.1070.0838.
20- Youssef, A. E. An integrated MCDM approach for cloud service selection based on TOPSIS and BWM. IEEE Access.2020; 8:71851-71865. doi: 10.1109/ACCESS.2020.2987111.
21- Yuji DU, Ming FU, Weike DUANMU, Longfei HOU, Jing LI. Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation. Journal of Tsinghua University (Science and Technology. 2023;63:6.941-950.doi : 10.16511/j.cnki.qhdxxb.2023.22.010.
22- Yu X, Liang W, Zhang L, Reniers G, Lu L. Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty. Reliability engineering & system safety. 2018 ; 1;177:50-67.. doi: 10.1016/j.jlp.2024.105370.