کاربرد معادلات دیفرانسیل در حل مدلی از پدیده های زیست محیطی
محورهای موضوعی : کاربرد شیمی در محیط زیست
1 - دانشگاه آزاد اسلامی واحد اهر
کلید واژه: علوم زیست محیطی, مدل سازی ریاضی , معادله دیفرانسیل, ,
چکیده مقاله :
معادلات دیفرانسیل نقش کلیدی در علوم زیست نقش محیطی ایفا می کنند و ابزارهای ریاضی را برای درک فرآیندهای محیطی و پیش بینی تغییرات فراهم می کنند. هدف تحقیق ارائه روشهای مدلسازی ریاضی برای حل مسائل زیست محیطی واستفاده از تکنیک ها ومتدهای استاندارد ریاضی جهت حل مدل با دست آوردن نتایج مورد نظراست و تجزیه و تحلیل بر اساس قوانین ریاضی و سیستم اکولوژی انجام می شود. در این تحقیق به کاربرد معادلات دیفرانسیل برای مدلسازی محیطی، به ویژه در پراکندگی آلایندهها، دینامیک اکوسیستم و پیشبینی تغییرات آب و هوا پرداخته می شود. دراین پژوهش مبانی ریاضی، روش مدلسازی از طریق معادله دیفرانسیل بررسی می شود و نقش آن را در تبیین پیچیدگی سیستم محیطی نمایان میکند. این مقاله همچنین به پتانسیل توسعه آینده معادلات دیفرانسیل در موضوعات بین رشتهای و محاسبات پیشرفته تر اشاره میکند که زمینه تحقیق و مسیر بهبود را برای حوزه علوم زیست محیطی فراهم میکند.
Differential equations play a key role in the environmental sciences and provide mathematical tools for understanding environmental processes and predicting changes. The purpose of the research is to provide mathematical modeling methods to solve environmental problems and to use standard mathematical techniques and methods to solve the model by obtaining the desired results, and the analysis is done based on mathematical laws and ecological system. In this research, the application of differential equations for environmental modeling, especially in pollutant dispersion, ecosystem dynamics, and climate change prediction, is discussed. In this research, mathematical foundations, modeling method through differential equation is examined and its role in explaining the complexity of the environmental system is revealed. This paper also points to the potential for future development of differential equations in interdisciplinary topics and more advanced computing, which provides a research context and improvement path for the field of environmental sciences.
[1] Tsoko. C. P., Xu, Y., 2009, Modeling carbon dioxide emissions with a system of differential equations. Nonlinear Analysis-Theory Methods & Applications, 71(12). E1182-E1197.
[2] Lu, Z., L. Zhenwei., Wang, H. L., 2016, The application of regression analysis and differential equation models in the prediction of indoor PM2.5 concentration. Journal of Residuals Science & Technology, 13(1), 325-328.
[3] Tiwari, J. L., Hobbie, J. E., 1976, Random differential equations as models of ecosystems Initial condition and parameter specifications in terms of maximum entropy distributions. Mathematical Biosciences, 31(1-2), 37-53.
[4] Liu, Y. L., Chen, C., Alotaibi, R., Shorman, S. M., 2022, Study on audio-visual family restoration of children with mental disorders based on the mathematical model of fuzzy comprehensive evaluation of differential equation. Applied Mathematics and NonlinearSciences,7(2), 307-314.
[5] Kafle, R. C., Pokhrel, K. P., Khanal, N Tsokos. C. P., 2019, Differential equation model of carbon dioxide emission using functional linear regression. Journal of Applied Statistics, 46(7), 1246-1259.
[6] Cai, W. G., & Pan, J. F., 2017, Stochastic differential equation models for the price European CO2 emissions allowances. Sustainability, 9(2), 207.
[7] Murray, J. D., 1989, Mathematical biology. Biomathematics. Volume 19. Springer-Verlag, Berlin, Germany.
[8] Edelstein-Keshet, L.,1986, Mathematical models in biology.Random House, New York, NewYork, USA.
[9] Okubo, A., 1980, Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin, Germany.
[10] Gulliver, J.S, 2007, Introduction to chemical transport in the environment. Cambridge University Press.
[11] Chapra. S.C., 1997, Surface water-quality modeling, Vol. 1, McGraw- Hill New York.
[12] Massabo. M., Cianci, R., Paladino, O., 2011, An analytical solution of the advection dispersion equation in a bounded domain and its application to laboratory experiments, Journal of Applied Mathematics, 2011, 1,p.493014..
[13] Mikhailov, M. D., & Ozisik, M. N., 1984, Unified analysis and solutions of heat and mass diffusion.
[14] Pérez Guerrero, J., et al., 2009, Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique, International Journal of Heat and Mass Transfer, 52(13), 3297-3304.
[15] Van Genuchten, M. T., 1982, Analytical solutions of the one-dimensional convective-dispersive solute transport equation (No. 1661). US Department of Agriculture, Agricultural Research Service.
[16] Barati Moghaddam, M., Mazaheri, M., Mohammad Vali Samani, J., 2015, Numerical Solution of Advection-Dispersion Equation with Temporal Conservation Zones in Case of Unsteady Flow in Irregular Sections. Journal of Science And Irrigation Engineering, 40, 1, 99-117.
[17] Parsaie, A., Haghiabi, A. H., 2015, Calculation of Longitudinal Dispersion Coefficient and Modeling of Pollution transport in Rivers (Case Study: Severn and Narew Rivers), Water and Soil, in persian, 29, 5, 1070-1085.
[18] Wu, L., Zhang, X., & Manafian, J., 2021, On the Exact Solitary Wave Solutions to the New (2+ 1) and (3+ 1)‐Dimensional Extensions of the Benjamin‐Ono Equations. Advances in Mathematical Physics, 2021(1), 6672819.
[19] Manafian, J., 2018, Optical solitons in a power-law media with fourth order dispersion by three integration methods, Cogent math. stat., 5 (1), 1434924.
[20] Manafian.J, Lakestani, M., 2016, Abundant soliton solutions for the Kundu-Eckhaus equation via 𝑡(𝜙∕2)-expansion method. Optik,127:5543–51.
[21] Dehghan, M., & Manafian, J., 2009, The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method. Zeitschrift für Naturforschung A, 64(7-8), 420-430.