Integrating Biophysical Modeling and Radiomics: Computational Strategies for Brain Tumor Growth and Therapy Planning
محورهای موضوعی : Biotechnological Journal of Environmental Microorganisms
Abdul Razak Mohamed Sikkander
1
,
Hala S. Abuelmakarem
2
1 - Department of Chemistry, Velammal Engineering College, Chennai -600066 Tamilnadu INDIA
2 - Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
کلید واژه: Radiomics, Multi-Parametric MRI (mpMRI), FET-PET Imaging, Bayesian Inference,
چکیده مقاله :
Central nervous system (CNS) tumors, such as glioblastomas, are characterized by significant histologic, molecular, and imaging heterogeneity, complicating precise diagnosis and therapeutic planning. Integrating biophysical growth models with multiparametric magnetic resonance imaging (mpMRI) and radiomic feature analysis offers a promising computational framework for personalized neuro-oncology.Biophysical models simulate tumor growth and invasion based on physical principles, providing insights into spatial patterns of tumor proliferation and invasion. Calibrating these models using mpMRI data, which includes sequences like T1-weighted, T2-weighted, FLAIR, and diffusion-weighted imaging, allows for the extraction of quantitative features that reflect tumor characteristics. The integration of biophysical models, mpMRI, and radiomics has shown promise in differentiating tumor types, assessing treatment response, and predicting patient outcomes. For instance, studies have demonstrated the utility of radiomics in distinguishing glioblastomas from primary CNS lymphomas and in evaluating treatment responses. However, challenges remain, including standardization of imaging protocols, reproducibility across different institutions, and the need for large-scale clinical validation.
Advancements in machine learning and deep learning are driving the development of more robust and accurate models. The integration of these technologies with biophysical modeling and radiomics holds the potential to revolutionize CNS tumor classification and grading, aligning with the World Health Organization's evolving classification systems. Ultimately, these integrated strategies aim to improve patient outcomes through personalized treatment approaches. In summary, the fusion of biophysical modeling, mpMRI, and radiomics represents a significant step toward precision neuro-oncology, offering a comprehensive and personalized approach to the diagnosis and treatment of CNS tumors.
Central nervous system (CNS) tumors, such as glioblastomas, are characterized by significant histologic, molecular, and imaging heterogeneity, complicating precise diagnosis and therapeutic planning. Integrating biophysical growth models with multiparametric magnetic resonance imaging (mpMRI) and radiomic feature analysis offers a promising computational framework for personalized neuro-oncology.Biophysical models simulate tumor growth and invasion based on physical principles, providing insights into spatial patterns of tumor proliferation and invasion. Calibrating these models using mpMRI data, which includes sequences like T1-weighted, T2-weighted, FLAIR, and diffusion-weighted imaging, allows for the extraction of quantitative features that reflect tumor characteristics. The integration of biophysical models, mpMRI, and radiomics has shown promise in differentiating tumor types, assessing treatment response, and predicting patient outcomes. For instance, studies have demonstrated the utility of radiomics in distinguishing glioblastomas from primary CNS lymphomas and in evaluating treatment responses. However, challenges remain, including standardization of imaging protocols, reproducibility across different institutions, and the need for large-scale clinical validation.
Advancements in machine learning and deep learning are driving the development of more robust and accurate models. The integration of these technologies with biophysical modeling and radiomics holds the potential to revolutionize CNS tumor classification and grading, aligning with the World Health Organization's evolving classification systems. Ultimately, these integrated strategies aim to improve patient outcomes through personalized treatment approaches. In summary, the fusion of biophysical modeling, mpMRI, and radiomics represents a significant step toward precision neuro-oncology, offering a comprehensive and personalized approach to the diagnosis and treatment of CNS tumors.
1. Astaraki, M., Häger, W., Lazzeroni, M., & Toma-Dasu, I. (2024). Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling. Physica Medica, 129, 104881. https://doi.org/10.1016/j.ejmp.2024.104881
2. Ocaña-Tienda, B., & Pérez-García, V. M. (2024). Mathematical modeling of brain metastases growth and response to therapies: A review. Mathematical Biosciences, 373, 109207. https://doi.org/10.1016/j.mbs.2024.109207
3. van Timmeren, J., Cester, D., Tanadini-Lang, S. et al. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11, 91 (2020). https://doi.org/10.1186/s13244-020-00887-2
4. Brocki, L.; Chung, N.C. Integration of Radiomics and Tumor Biomarkers in Interpretable Machine Learning Models. Cancers 2023, 15, 2459. https://doi.org/10.3390/cancers15092459
5. Atmakuru, A., Chakraborty, S., Faust, O., Salvi, M., Barua, P. D., Molinari, F., Acharya, U., & Homaira, N. (2024). Deep learning in radiology for lung cancer diagnostics: A systematic review of classification, segmentation, and predictive modeling techniques. Expert Systems With Applications, 255, 124665. https://doi.org/10.1016/j.eswa.2024.124665
6. Webster, M.; Podgorsak, A.; Li, F.; Zhou, Y.; Jung, H.; Yoon, J.; Dona Lemus, O.; Zheng, D. New Approaches in Radiotherapy. Cancers 2025, 17, 1980. https://doi.org/10.3390/cancers17121980
7. Hormuth, D.A., II; Phillips, C.M.; Wu, C.; Lima, E.A.B.F.; Lorenzo, G.; Jha, P.K.; Jarrett, A.M.; Oden, J.T.; Yankeelov, T.E. Biologically-Based Mathematical Modeling of Tumor Vasculature and Angiogenesis via Time-Resolved Imaging Data. Cancers 2021, 13, 3008. https://doi.org/10.3390/cancers13123008
8. Zhang, W.; Guo, Y.; Jin, Q. Radiomics and Its Feature Selection: A Review. Symmetry 2023, 15, 1834. https://doi.org/10.3390/sym15101834
9. Velpula, T., & Buddolla, V. (2025). Enhancing detection and monitoring of circulating tumor cells: Integrative approaches in liquid biopsy advances. The Journal of Liquid Biopsy, 8, 100297. https://doi.org/10.1016/j.jlb.2025.100297
10. Mang, A., Bakas, S., Subramanian, S., Davatzikos, C., & Biros, G. (2020). Integrated Biophysical Modeling and Image Analysis: Application to Neuro-Oncology. Annual Review of Biomedical Engineering, 22(1), 309–341. https://doi.org/10.1146/annurev-bioeng-062117-121105
11. Farea, A.; Yli-Harja, O.; Emmert-Streib, F. Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges. AI 2024, 5, 1534-1557. https://doi.org/10.3390/ai5030074
12. Shah, S.; D’Souza, G.G.M. Modeling Tumor Microenvironment Complexity In Vitro: Spheroids as Physiologically Relevant Tumor Models and Strategies for Their Analysis. Cells 2025, 14, 732. https://doi.org/10.3390/cells14100732
13. Ruiz-Arrebola, S.; Guirado, D.; Villalobos, M.; Lallena, A.M. Evaluation of Classical Mathematical Models of Tumor Growth Using an On-Lattice Agent-Based Monte Carlo Model. Appl. Sci. 2021, 11, 5241. https://doi.org/10.3390/app11115241
14. Pasetto, S., Montejo, M., Zahid, M. U., Rosa, M., Gatenby, R., Schlicke, P., Diaz, R., & Enderling, H. (2024). Calibrating tumor growth and invasion parameters with spectral spatial analysis of cancer biopsy tissues. Npj Systems Biology and Applications, 10(1). https://doi.org/10.1038/s41540-024-00439-0
15. Adrover, J. M., Han, X., Sun, L., Fujii, T., Sivetz, N., Daßler-Plenker, J., Evans, C., Peters, J., He, X., Cannon, C. D., Ho, W. J., Raptis, G., Powers, R. S., & Egeblad, M. (2025). Neutrophils drive vascular occlusion, tumour necrosis and metastasis. Nature. https://doi.org/10.1038/s41586-025-09278-3
16. Debnath, G., Vasu, B., Gorla, R. S. R., Bég, O. A., & Bég, T. A. (2025). Integrating mathematical models in clinical oncology: Enhancing therapeutic strategies. Archives of Pharmacology and Therapeutics, 7(1), 1–27. https://doi.org/10.33696/pharmacol.7.060
17. Ballatore, F., Lucci, G., & Giverso, C. (2024). Modelling and simulation of anisotropic growth in brain tumours through poroelasticity: A study of ventricular compression and therapeutic protocols. Computational Mechanics, 74(5), 1137–1169. https://doi.org/10.1007/s00466-024-02471-7
18. Keshavanarayana, P., Aparicio-Yuste, R., Spill, F., Gomez-Benito, M. J., & Bastounis, E. E. (2025). Leveraging computational modeling to explore epithelial and endothelial cell monolayer mechanobiology. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2024.12.014
19. Azevedo, T. A., Abrantes, A. M., & Carvalho, J. (2025). Radiobiological Modeling with Monte Carlo Tools – Simulating Cellular Responses to Ionizing Radiation. Technology in Cancer Research & Treatment, 24. https://doi.org/10.1177/15330338251350909
20. Horvat, N., Papanikolaou, N., & Koh, D. (2024b). Radiomics Beyond the Hype: A Critical Evaluation toward Oncologic Clinical Use. Radiology Artificial Intelligence, 6(4). https://doi.org/10.1148/ryai.230437
21. Mayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., & Cook, G. (2020). Introduction to Radiomics. Journal of Nuclear Medicine, 61(4), 488–495. https://doi.org/10.2967/jnumed.118.222893
22. Safarian, A., Mirshahvalad, S. A., Nasrollahi, H., Jung, T., Pirich, C., Arabi, H., & Beheshti, M. (2025). Impact of [18F]FDG PET/CT Radiomics and Artificial intelligence in clinical decision making in lung Cancer: Its Current Role. Seminars in Nuclear Medicine. https://doi.org/10.1053/j.semnuclmed.2025.02.006
23. Choi, K. S., Choi, M. S., Park, M., & Jahng, G. (2025). Signal Modeling and Neuroimaging Applications of perfusion MRI with contrast agent: Part 2 Dynamic Contrast-Enhanced Method. Investigative Magnetic Resonance Imaging, 29(2), 70. https://doi.org/10.13104/imri.2025.0001
24. Schmitz‐Abecassis, B., Cornelissen, I., Jacobs, R., Kuhn‐Keller, J. A., Dirven, L., Taphoorn, M., Van Osch, M. J. P., Koekkoek, J. a. F., & De Bresser, J. (2025). Extension of T2 hyperintense areas in patients with a glioma: a comparison between High‐Quality 7 T MRI and clinical scans. NMR in Biomedicine, 38(3). https://doi.org/10.1002/nbm.5316
25. Romano, A., Palizzi, S., Romano, A., Moltoni, G., Di Napoli, A., Maccioni, F., & Bozzao, A. (2023). Diffusion Weighted Imaging in Neuro-Oncology: Diagnosis, Post-Treatment Changes, and Advanced Sequences—An Updated review. Cancers, 15(3), 618. https://doi.org/10.3390/cancers15030618
26. Mebis, W., Snoeckx, A., Corthouts, B., Addouli, H. E., Nicolay, S., Van Hoyweghen, A., Spinhoven, M., & De Beeck, B. O. (2020). Correlation between apparent diffusion coefficient value on MRI and histopathologic WHO grades of neuroendocrine tumors. Journal of the Belgian Society of Radiology, 104(1). https://doi.org/10.5334/jbsr.1925
27. Kim, K. J., Park, M., Joo, B., Ahn, S. J., & Suh, S. H. (2022). Dynamic Contrast-Enhanced MRI and its applications in various central nervous system diseases. Investigative Magnetic Resonance Imaging, 26(4), 256. https://doi.org/10.13104/imri.2022.26.4.256
28. Verma, A., Kumar, I., Verma, N., Aggarwal, P., & Ojha, R. (2016). Magnetic resonance spectroscopy — Revisiting the biochemical and molecular milieu of brain tumors. BBA Clinical, 5, 170–178. https://doi.org/10.1016/j.bbacli.2016.04.002
29. Gill, S. K., Rose, H. E. L., Wilson, M., Gutierrez, D. R., Worthington, L., Davies, N. P., MacPherson, L., Hargrave, D. R., Saunders, D. E., Clark, C. A., Payne, G. S., Leach, M. O., Howe, F. A., Auer, D. P., Jaspan, T., Morgan, P. S., Grundy, R. G., Avula, S., Pizer, B., . . . Peet, A. C. (2024). Characterisation of paediatric brain tumours by their MRS metabolite profiles. NMR in Biomedicine, 37(5). https://doi.org/10.1002/nbm.5101
30. De Pietro, S., Di Martino, G., Caroprese, M., Barillaro, A., Cocozza, S., Pacelli, R., Cuocolo, R., Ugga, L., Briganti, F., Brunetti, A., Conson, M., & Elefante, A. (2024). The role of MRI in radiotherapy planning: a narrative review “from head to toe.” Insights Into Imaging, 15(1). https://doi.org/10.1186/s13244-024-01799-1
