The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma
محورهای موضوعی : Journal of Theoretical and Applied PhysicsMasoomeh Mahmoodi-Darian 1 , Mehdi Ettehadi-Abari 2 , Mahsa Sedaghat 3
1 - Department of Physics, Karaj Branch, Islamic Azad University
2 - Physics Department and Laser Research Institute of Beheshti University, G.C.
3 - Physics Department and Laser Research Institute of Beheshti University, G.C.
کلید واژه: Laser plasma interaction, Ponderomotive force, Underdense magnetized plasma, Nonrelativistic regime, Electrons density distribution,
چکیده مقاله :
AbstractLaser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ2≃1014-1016Wcm-2μm2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$ I{lambda^2} simeq 10^{14}{-}10^{16};{ ext{W}};{{ ext{cm}}^{-2}} ;upmu{{ ext{m}}^{2}} $$end{document}. The collisionless effect is found to be significant when the incident laser intensity is less than 1016Wcm-2μm2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$ 10^{16};{ ext{W}};{{ ext{cm}}^{-2}};upmu{{ ext{m}}^{2}} $$end{document}. In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.