Shifted Tietz–Wei oscillator for simulating the atomic interaction in diatomic molecules
محورهای موضوعی : Journal of Theoretical and Applied PhysicsBabatunde J. Falaye 1 , Sameer M. Ikhdair 2 , Majid Hamzavi 3
1 - Applied Theoretical Physics Division, Department of Physics, Federal University Lafia
2 - Department of Physics, Faculty of Science, An-Najah National University;Department of Electrical Engineering, Near East University
3 - Department of Physics, University of Zanjan
کلید واژه: Exact quantization rule, Formula method, Shifted Tietz, Wei potential,
چکیده مقاله :
AbstractThe shifted Tietz–Wei (sTW) oscillator is as good as traditional Morse potential in simulating the atomic interaction in diatomic molecules. By using the Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this typical molecular model via the exact quantization rule (EQR). The energy spectrum for a set of diatomic molecules (NOa4Πidocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( a^4Pi _i ight) $$end{document}, NOB2Πrdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( B^2Pi _r ight) $$end{document}, NOL′2ϕdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( L'^2phi ight) $$end{document}, NOb4Σ-documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m NO} left( b^4Sigma ^{-} ight) $$end{document}, IClX1Σg+documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m ICl}left( X^1Sigma _g^{+} ight) $$end{document}, IClA3Π1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m ICl}left( A^3Pi _1 ight) $$end{document} and IClA′3Π2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$${ m ICl}left( A'^3Pi _2 ight) $$end{document} for arbitrary values of ndocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$n$$end{document} and ℓdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$ell $$end{document} quantum numbers are obtained. For the sake of completeness, we study the corresponding wavefunctions using the formula method.