توصیف اشتقاق های مکعبی روی رده های مختلف جبرهای باناخ
محورهای موضوعی : آمارفریبا فرجپور 1 , علی عبادیان 2 , شهرام نجف زاده 3
1 - گروه ریاضی، دانشگاه پیامنور، تهران، ایران
2 - گروه ریاضی، دانشگاه پیامنور، تهران، ایران
3 - استاد گروه ریاضی دانشگاه ارومیه، ارومیه، ایران
کلید واژه: -Lau product, module extensions of Banach algebras, amalgamated Banach algebra, linear-cubic derivation, cubic derivation,
چکیده مقاله :
فرض کنید A یک جبر باناخ و X یک باتاخ A-دومدول باشد. نگاشت D:A-->X را یک اشتقاق مکعبی نامند هرگاه برای هر a,bin A داشته باشیم D(ab)=a^3D(b)+D(a)b^3. نگاشت D را یک نگاشت همگن مکعبی نامند هرگاه برای هر ain A و lambdain C داشته باشیم D(lambda a)=lambda D(a). در این مقاله نگاشت خطی-مکعبی و اشتقاق خطی-مکعبی را بهصورت زیر تعریف میکنیم. نگاشت همگن مکعبی D:A-->X را یک نگاشت خطی-مکعبی گوییم هرگاه برای هر a,bin A و lambdain C داشته باشیم D(lambda a+b)=lambda D(a)+D(b) و علاوه براین اگر D یک اشتقاق مکعبی باشد آن را یک اشتقاق خطی-مکعبی نامیم. در این مقاله اشتقاق های خطی-مکعبی را روی رده های مختلفی از جبرهای باناخ شامل جبرهای باناخ حاصل از ضرب theta-لائو، جبرهای باناخ توسیع مدولی و جبرهای باناخ ملقمهای توصیف می کنیم. برای توصیف، theta-اشتقاق مکعبی و نگاشت های مکعبی مدولی را تعریف می کنیم. برای جبرباناخ Atimes_theta B که thetainsigma{A}cup{0} و A یکدار است، نشان می دهیم که اشتقاق خطی-مکعبی است اگروتنهااگر theta-اشتقاق مکعبیD_B,A:B--->A و اشتقاق های خطی-مکعبی D_A:A--->A و D_B:B--->Bموجود باشند که برای هر (a,b)in Atimes_theta B ، به صورت D(a,b)=(D_A(a)+D_B,A(b),D(b)) باشد و برای هر (a,b)in Atimes_theta B در شرط داده شده صدق کند. نتایجی مشابه برای جبرهای باناخ توسیع مدولی و ملقمهای بدست می آوریم.
Let A be a Banach algebra and X be a Banach A-bimodule. A mapping D:A--->X is called a cubic derivation if, for all a,bin A we have D(ab)=a^3D(b)+D(a)b^3 . The mapping D:A--->X is called a cubic homogenous map if we have D(lambda a)=lambda^3 D(a) for all ain A and lambdain C. In this paper, we define linear-cubic map and linear-cubic derivation as follows. We say the cubic homogenous map D:A--->X is a linear-cubic map if we have D(lambda a+b)=lambda^3D(a)+D(b) , for all a,bin A and lambdain C and moreover if D:A--->X is a cubic derivation, then we call it a linear-cubic derivation. In this paper, we characterize linear-cubic derivations on various class of Banach algebras such as Banach algebras obtained by theta-Lau product, module extensions of Banach algebras and amalgamated Banach algebras. For characterizing, we define theta-cubic derivation and module cubic mappings. For Banach algebra Atimes_theta B , where thetainsigma(A)cup{0} and A is unital, we show that D:A--->X is a linear-cubic derivation if and only if there are theat -cubic derivation D_B,A:B--->A and linear-cubic derivations D_A:A--->A and D_B:B---> B such that for any (a,b)in Atimes_theta B, be as follows D(a,b)=(D_A(a)+D_B,A(b),D(b)) and these mappings satisfy in the given condition. We obtain similar results for module extensions of Banach algebras and amalgamated Banach algebras.
[1] A. M. Wazwaz. A first course in integral equations. World Scientific. Singapour (1997)
[2] A. M. Wazwaz. Linear and nonlinear integral equation: methods and applications. Higher Education Press and Springer Verlage (2011)
[3] M. H. Reihani, Z. Abadi. Rationalized Harr functions method for solving Fredholm and Volterra integral equations. Journal of Computational and Applied Mathematics 12-20 (2007)
[4] J. Saberi-Nadjafi, M. Mehrabinezhad, T. Diogo. The Coiflet-Galerkin method for linear Volterra integral equations. Applied Mathematics and Computation 221:469-483(2013)
[5] J. Saberi-Nadjafi, M. Mehrabinezhad, H. Akbari. Solving Volterra integral equations of the second kind by Wavelet-Galerkin scheme. Computer and Mathematics with Applications 63:1536-1547(2012)
[6] Miggen Cui, Yingzhen Lin.Nonlinear Numerical Analysis in the Reproducing Kernel Space.Nova Science Publishers, Inc (2008)
[1] K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274(2): 267-278(2002)
[2] M. Eshaghi Gordji, S. Kaboli Gharetapeh, M. B. Savadkouhi, M. Aghaei and T. Karimi. On cubic derivations. Int. J. Math. Anal. 4(51): 2501–2514(2010)
[3] A. Bodaghi, Cubic derivations on Banach algebras. Acta Math. Vietnam. 38: 517–528(2013)
[4] A. T.-M. Lau. Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118: 161-175(1983)
[5] M. Sangani-Monfared. On certain products of Banach algebras with applications to harmonic analysis", Studia Math. 178(3): 277-294(2007)
[6] S. J. Bhatt and P. A. Dabhi. Arens regularity and amenability of Lau product of Banach algebras. Bull. Aust. Math. Soc. 87: 195–206(2013)
[7] P. A. Dabhi, A. Jabbari, and K. Haghnejad Azar. Some notes on amenability and weak amenability of Lau product of Banach algebras defined by a Banach algebra morphism. Acta Mathematica Sinica, English Series 31(9): 1461–1474(2015)
[8] Dabhi, P. A., and S. K. Patel. "Spectral properties of the Lau product of Banach algebras." Annals Funct. Anal. 9(2): 246-257(2018)
[9] E. Ghaderi, R. Nasr-Isfahani, and M. Nemati. Some notions of amenability for certain products of Banach algebras. Colloquium Math. 130(2): 147-157(2013)
[10] A. R. Khoddami and H. R. Ebrahimi Vishki. Biflatness and biprojectivity of Lau product of Banach algebras. Bull. Iran. Math. Soc. 39(3): 559-568(2013)
[11] H. Pourmahmood Agababa. Derivations and generalized semidirect products of Banach algebras. Banach J. Math. Anal. 10(3): 1735-8787(2016)
[12] S. Shams. Derivations on Lau product of Banach algebras. Journal of New Researches in Mathematics. in press.
[13] Y. Zhang. Weak amenability of module extensions of Banach algebras. Trans. Amer. Math. Soc., 354: 4131-4151(2002)
[14] A. Bagheri Vakilabad, K. Haghnejad Azar and A. Jabbari. Arens regularity of module actions and weak amenability of Banach algebras, Period. Math. Hung. 71(2): 224-235(2015)
[15] M. Eshaghi Gordji, F. Habibian and A. Rejali. Module extension of dual Banach algebras, Bull. Korean Math. Soc. 47(4): 663-673(2010)
[16] A. R. Medghalchi and H. Pourmahmood-Aghababa. On module extension Banach algebras. Bull. Iran. Math. Soc. 37(4): 171-183(2011)
[17] R. Medghalchi and H. Pourmahmood-Aghababa, The first cohomology group of module extension Banach algebras, Rocky Mount. J. Math. 41(5): 1639-1651(2011)
[18] A. Jabbari and A. Ebadian, The first cohomology group of module extension Banach algebras, Rocky Mount. J. Math. to appear.
[19] H. Javanshiri and M. Nemati, Amalgamated duplication of the Banach algebra along a -bimodule , Journal of Algebra and its Applications. 17(9): 1850169(2018)
[20] A. Ebadian, A. Jabbari. Biprojectivity and biflatness of amalgamated duplication of Banach algebras. Journal of Algebra and its Applications. 19(7): 2050132(2020)