هاوس هولدر و فرمهای فشرده J ماتریس های
محورهای موضوعی : آمار
1 - گروه ریاضی، دانشکده علوم، دانشگاه لرستان، خرم آباد، ایران
کلید واژه: J-symmetric matrices, J-Orthonormal matrix, J-Householder matrix, QR-Factorization, Indefinite inner product,
چکیده مقاله :
چکیده: در این مقاله هدف اصلی توجه به ماتریس های J- هاوس هولدر و کاربردهایی از آن است ، از دستاوردهای این کار تجزیه QR برای یک ماتریس مربعی است، که در آن Q یک ماتریس J-متعامد و R یک ماتریس بالا مثلثی است. سپس تحویل ماتریس ها به فرم هسنبرگ بررسی می شود و بعد از آن نشان داده می شود که چگونه یک ماتریس J-متقارن را می توان به فرم سه قطری تحویل کرد.موضوع تحویل ماتریس ها به فرم های مثلثی، هسنبرگ و سه قطری از موضوعات مهم جبرخطی عددی می باشد. به عنوان مثال از این دست کارها را می توان در [1] ،[2] ، [3] و [4] مشاهده کرد. در [4] از تشابه J-یکانی برای رسیدن به فرم فشرده استفاده شده است. در این مقاله ما از تبدیلات J -هاوس هولدر برای یافتن فرمهای فشرده ماتریس ها استفاده می کنیم. ما با تغییر ماتریس های تبدیل از هاوس هولدر به J -هاوس هولدر دامنه عمل این تبدیلات را از متقارن به J-متقارن تغییر می دهیم. منبع تعاریف و مفاهیم بکار برده شده در این مقاله منابع [5] و [6] می باشند.
Abstract. The main concept in this paper is the notion of the J-Householder matrix and its main applications. From these cases are the achievement to QR-decomposition, where Q is a J-Orthogonal matrix and R is an upper triangular matrix and reduction to the Hessenberg form and the tridiagonal form, for J-symmetric matrices.The reduction problem to condensed forms of triangular, Hessenberg and tridiagonal is one of the important problem in the numerical linear algebra. It is thestructures of these condensed forms that are exploited in the solution of the reduced problem. For example, as we have seen in [2], [3],[7], [8], [6], [9] and [10], thesolution of the linear system Ax = b is usually obtained by first triangularizing thematrix A and then solving an equivalent triangular system. In [8], for reductionto a condensed form, the concept of J−unitary similarity is used, while in the restis used in the ordinary sense. In eigenvalue computations, the matrix A is transformed to a Hessenberg form befor applying the QR iterations. In [1], for reductionto a condensed form, the concept of J−unitary similarity is used. These condensedforms are Householder transformations and mybe J−Householder transformations.
]1[ حسین موسائی، سعید کتابچی، محمد تقی فولادی، روش لاگرانژ بهبود یافته برای حل دستگاه معادلات قدرمطلق و کاربرد آن در مسایل مقدار مرزی دو نقطهای، پژوهش های نوین در ریاضی، 5 (20)( 1398)
]2[ محمود پریپو، اسمعیل بابلیان، لیلا اسدبیگی، یک مدل جدید ABS سهگامی برای حل دستگاههای معادلات خطی تمام رتبه سطری، پژوهشهای نوین در ریاضی، 6 (26)( 1399)
[3] M. Dana, A. G. Zykov, Kh.D. Ikramov, A minimal residual method for a special class of the linear systems with normal coefficient matrices.-Comput. Math. Math. Phys., 45 (2005) 1854-1863.
[4] M. Ghasemi Kamalvand, Kh. D. Ikramov, A Method of Congruent Type for Linear Systems with Conjugate-Normal Coefficient Matrices.- Computational Mathematics and Mathematical Physics, 2009, Vol. 49, No. 2, pp.203-216.
[5] K. Niazi Asil, M. Ghasemi Kamalvand, On reduction of K-almost normal and K-almost conjugate normal matrices to a block tridiagonal form. - J. Korean Soc. Ind. Appl. Math. Vol.23, No.3, 267282, 2019.
[6] K. Niazi asil, M. Ghasemi Kamalvand , Some Hyperbolic Iterative Method for Linear Systems , Journal of Applied Mathematics Volume 2020, Article ID 9874162, 8 pages.
[7] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[8] Biswa Nath Datta, Numerical linear algebra and applications. Delhi: PHI Learning Private Limited, 1985.
[9] I.Gohberg, P.Lancaster, L.Rodman, Indefinite linear algebra and applications. Birkh- auser, 2005.
[10] N.J. Higham, J-orthogonal matrices: properties and generations. SIAM, Rev.
45(3):504-519, (2003).