ارائه مدل سیاست گذاری فارنزیک بانکداری الکترونیک
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارافشین خدامرادی 1 , علیرضا پورابراهیمی 2 , محمدعلی افشار کاظمی 3
1 - دانشجوی دکتری مدیریت فناوری اطلاعات دانشگاه آزاد اسلامی واحد بین الملل قشم
2 - استادیار وعضوهیات علمی دانشکده مدیریت و حسابداری دانشگاه آزاد اسلامی واحد کرج(نویسنده مسئول)
3 - دانشیار گروه مدیریت صنعتی دانشکده مدیریت دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران ایران
کلید واژه: تجارت الکترونیکی, جرمشناسی, رخداد های سایبری, وبگاه, بانکداری,
چکیده مقاله :
در صنعت بانکداری امروز با توجه به پیچیدگی ابزارها و تنوع فعالیتهای بانکی و ارتباطات درون سیستمی، حفظ سلامت و ثبات نظام بانکی از مهمترین دلایل نظارت بر بانک ها و مؤسسات اعتباری است، از طرف دیگر مجرمان اینترنتی می توانند صدمات شدیدی وارد نمایند. این تحقیق توصیفی-کمّی است که از دو روش تفکر عمیق و مطالعهی پیمایشی بهره برده ودر جمعآوری از ابزار مختلف (مصاحبه، مشاهده، پرسشنامه و بررسی اسناد) استفاده شده است. جامعه آماری این تحقیق بررسی لاگ های رخدادهای سایبری طی یک سال اخیر میباشد و نمونهگیری خاصی صورت نگرفته است. پس از ارائه مدل، با توجه به نیازمندیهای پروژه، از شبیهسازهای معمول و مخصوصاً Matlab استفاده و نتایج بر اساس سرعت اجرا بررسی میشود. انتظار میرود سامانه ی طراحی شده برای تشخیص گونه های مختلف جرمشناسی ناشی از رخداد های سایبری در اینترنت انعطاف پذیری بالایی داشته و بتواند برای انواع دیگر وبگاه ها مورد استفاده قرار گیرد.
Given the complexity of tools as well as the variety of banking activities and intra-system communications, maintaining the banking system’s health and stability refers to one of the key reasons for monitoring banks and credit institutions in today’s banking industry; on the other hand, cybercriminals may cause serious harm. This is a descriptive-quantitative research employing two of deep thinking and survey study methods and different tools (interview, observation, questionnaire, and document review) for data collection. Its statistical population includes the investigation of cyber incident logs over the recent year, and no special sampling has been carried out. After presenting the model, the usual simulators, particularly MATLAB, are utilized based on the project needs and the results are reviewed according to the execution speed. The system designed to detect various criminology types caused by cyber incidents on the Internet is expected to have high flexibility and to be applied to other types of websites.
بست، جان (1395)، روشهای تحقیق در علوم تربیتی و رفتاری، ترجمه حسن پاشا شریفی و نرگس طالقانی، تهران، رشد.
ساروخانی، لیلا ؛ منتظر، غلامعلی (1396)، طراحی و پیاده سازی سیستم هوشمند شناسایی رفتار مشکوک در بانکداری اینترنتی به کمک نظریة مجموعه های فازی، فصلنامه فنّاوری اطلاعات و ارتباطات ایران، سال اول، شماره های 1و 2، پاییز و زمستان 1396.
Gupta, K., & Arora, N. (2019). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model. South Asian Journal of Business Studies.
Banu, R., Anand, M., Kamath, A., Ashika, S., Ujwala, H. S., & Harshitha, S. N. (2019, May). Detecting Phishing Attacks Using Natural Language Processing And Machine Learning. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS) (pp. 1210-1214). IEEE.
Adil, M., Khan, R., & Ghani, M. A. N. U. (2020, February). Preventive Techniques of Phishing Attacks in Networks. In 2020 3rd International Conference on Advancements in Computational Sciences (ICACS) (pp. 1-8). IEEE.
Subasi, A., & Kremic, E. (2020). Comparison of Adaboost with MultiBoosting for Phishing Website Detection. Procedia Computer Science, 168, 272-278.
اسدی صومعه، آ. (1398). توسعهی مدل پرامیتی به کمک نظریهی فازی شهودی و به کارگیری آن در بهبود کیفیت وبگاههای دانشگاهی. پایاننامهی کارشناسی ارشد مهندسی فناوری اطلاعات. تهران، دانشگاه تربیت مدرس.
ساروخانی، ل. (1397). تشخیص رفتارهای مشکوک مشتریان در بانکداری الکترونیکی با استفاده از نظریهی فازی. پایاننامهی کارشناسی ارشد مهندسی فناوری اطلاعات. تهران، دانشگاه تربیت مدرس.
عموزاد خلیلی، ح، ر. توکلی مقدم و ف. مطلبی. (1397). "اثرات بهبود امنیت بانکداری الکترونیکی در جلب رضایت مشتریان الکترونیکی" . دومین کنفرانس جهانی بانکداری الکترونیکی. تهران، ایران.
Li, Q., Cheng, M., Wang, J., & Sun, B. (2020). LSTM based Phishing Detection for Big Email Data. IEEE Transactions on Big Data.
Megha, N., Babu, K. R., & Sherly, E. (2019, July). An Intelligent System for Phishing Attack Detection and Prevention. In 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 1577-1582). IEEE.
Paliath, S., Qbeitah, M. A., & Aldwairi, M. (2020). PhishOut: Effective Phishing Detection Using Selected Features. arXiv preprint arXiv:2004.09789.
Olufemi, R., Adebowale, J., & Victoria, K. (2018). Detection and Prevention of Phishing Attack Using Linkguard Algorithm. Journal of Information, 4(1), 10-23.
Nisha, S., & Madheswari, A. N. (2016, February). Prevention of phishing attacks in voting system using visual cryptography. In 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS) (pp. 1-4). IEEE.
Gaharwar, R. S., & Gupta, R. (2020). Vulnerability assessment of android instant messaging application and network intrusion detection prevention systems. Journal of Statistics and Management Systems, 23(2), 399-406.
Prashanth Kumar, P., & Vinay, M. (2019). Enhanced Technique for Detection and Prevention of Phishing on Websites. Journal of Computational and Theoretical Nanoscience, 16(5-6), 2614-2618.
_||_