بررسی فعالیت متالوبتالاکتامازی و کارباپنمازی درسویه سودوموناس آئروژینوزا جدا شده از نمونه های بالینی در تهران
محورهای موضوعی : پاتوبیولوژی مقایسه ایسمیه مشایخی 1 , فاطمه نوربخش 2 , سحر هنرمند جهرمی 3
1 - گروه میکروبیولوژی، دانشکده علوم زیستی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران
2 - گروه میکروبیولوژی، دانشکده علوم زیستی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران
3 - گروه میکروبیولوژی، دانشکده علوم زیستی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران
کلید واژه: سودوموناس آئروژینوزا, متالوبتالاکتاماز, کارباپنماز, دیسک ترکیبی, تست اصلاح شده هاج,
چکیده مقاله :
سودوموناس آئروژینوزا یک پاتوژن فرصت طلب و از عوامل اصلی ایجاد عفونت های بیمارستانی می باشد. متالوبتالاکتامازها و کارباپنمازها از مهمترین عوامل ایجاد کننده مقاومت به داروهای کارباپنم در سویه های سودوموناس آئروژینوزا هستند. هدف از این مطالعه بررسی فعالیت متالوبتالاکتامازی و کارباپنمازی درسویه سودوموناس آئروژینوزا جدا شده از نمونه های بالینی است. تعداد 49 سویه سودوموناس آئروژینوزا جداشده از بیماران بستری در بخش مراقبت های ویژه مورد مطالعه قرار گرفت. سویه های مولد متالوبتالاکتاماز به روش دیسک ترکیبی و سویه های مولد کارباپنماز به روش اصلاح شده هاج مورد ارزیابی قرار گرفتند. همچنین برای تشخیص سویه های حامل ژن های VIM، SIM، GIM، SPM و IMP از روش PCR استفاده گردید. مقاومت آنتی بیوتیکی نسبت به آنتی بیوتیک های تیکارسیلین، مروپنم، جنتامیسین، سیپروفلوکساسین، سفپیم و سفتازیدیم به ترتیب 8/89%، 51%، 9/44%، 4/67%، 9/93%، 9/95% مشاهده شد. با بررسی فنوتیپی دیسک ترکیبی 1/55% سویه ها مولد متالوبتالاکتاماز و 8/38% سویه ها نیز به روش MHT مولد کارباپنماز مشاهده شدند. فراوانی هر یک از ژن ها VIM، SIM، GIM، به ترتیب 3/63%، 8/38%، 7/34% و ژن های SPM و IMP در هیچ یک از سویه ها مشاهده نشد.در این مطالعه ژن VIM در سویه های سودوموناس آئروژینوزا با فراوانی بیشتری نسبت به سایر ژن های مولد آنزیم های متالوبتالاکتامازی و کارباپنمازی مشاهده شد، همچنین فعالیت متالوبتلاکتامازی در سویه های مورد مطالعه بالاتر از فعالیت کارباپنمازی بود. لذا با توجه به اهمیت این سویه ها در عفونت های بیمارستانی، به کار گیری تکنیک های مناسب برای تشخیص این سویه ها جهت پیشگیری از انتشار این مقاومت ها امری ضروری است.
Pseudomonas aeruginosa is an opportunistic pathogen and a major cause of nosocomial infections. Metallobetalactamases and carbapenemases are the most important factors in resistance to carbapenem drugs in Pseudomonas aeruginosa strains. The aim of this study was to evaluate the activity of metallobetalactamase and carbapenemase in Pseudomonas aeruginosa isolated from clinical specimens. 49 strains of Pseudomonas aeruginosa isolated from patients admitted to the intensive care unit were identified by biochemical methods, then their antibiotic susceptibility was determined by Kirby- Bauer method. MBL producing strains were identified by phenotypic method combined disk test and KPC- producing strains were evaluated by MHT method. PCR method was also used to identify strains carrying VIM, SIM, GIM, SPM and IMP genes. Antibiotic resistance to ticarcillin, meropenem, gentamicin, ciprofloxacin, cefpime and ceftazidime were 89.8%, 51%, 44.9%, 67.4%, 93.9%, 95.9%, respectively. By phenotypic analysis combined disk test, 55.1% of the strains were identified as metallo-betalactamase producing strains. Also, 38.8% of carbapenemase producing strains were observed by MHT method. The frequencies of each of these gene’s VIM, SIM and GIM were 63.3%, 38.8%, 34.7%, respectively, and SPM and IMP genes were not observed in any of the strains in this study.
2.Mohsen M. Study Phenotype and genotype bla (IMP) and bla (VIM) metallo-β-lactamases genes and pattern antibiotic resistance Pseudomonas aeruginosa isolates from clinical samples Beheshti Hospital in the city of Qom. Yafte. 2018;97(5):36-22
3.Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences. 2021;22(6):3128.
4.Langendonk RF, Neill DR, Fothergill JL. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: implications for current resistance-breaking therapies. Frontiers in Cellular and Infection Microbiology. 2021;11:665759.
5.Lomovskaya O, Rubio-Aparicio D, Nelson K, Sun D, Tsivkovski R, Castanheira M, et al. In Vitro Activity of the Ultrabroad-Spectrum Beta-Lactamase Inhibitor QPX7728 in Combination with Multiple Beta-Lactam Antibiotics against Pseudomonas Aeruginosa. Antimicrobial agents and chemotherapy. 2021;65(6):e00210-21.
6.Safarirad S, Arzanlou M, Mohammadshahi J, Vaez H, Sahebkar A, Khademi F. Prevalence and characteristics of metallo-beta-lactamase-positive and high-risk clone ST235 Pseudomonas aeruginosa at Ardabil hospitals. Jundishapur Journal of Microbiology. 2021;74(63):874-256
7.Kouhsari E, Fakhre Yaseri H, Samadi Kafil H, Mohamadzade R, Rahbar M. A review on common laboratory methods for detection of carbapenemase Gram-negative bacilli. Razi Journal of Medical Sciences. 2018;24(165):47-65.
8.Bogiel T, Prażyńska M, Kwiecińska-Piróg J, Mikucka A, Gospodarek-Komkowska E. Carbapenem-resistant Pseudomonas aeruginosa strains-distribution of the essential enzymatic virulence factors genes. Antibiotics. 2020;10(1):8.
9.Lee M, Abbey T, Biagi M, Wenzler E. Activity of aztreonam in combination with ceftazidime–avibactam against serine-and metallo-β-lactamase–producing Pseudomonas aeruginosa. Diagnostic microbiology and infectious disease. 2021;99(1):115227.
10.Dahiya S, Singla P, Chaudhary U, Singh B. Carbapenemases: a review. Int J Adv Health Sci. 2015;2(4):11-7.
11.Rodloff A, Goldstein E, Torres A. Two decades of imipenem therapy. Journal of Antimicrobial Chemotherapy. 2006;58(5):916-29.
12.Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clinical microbiology reviews. 2007;20(3):440-58.
13.Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed research international. 2014; ;96(5):36-22.
14.Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. Journal of Chemotherapy. 2016;87(3):36-22.
15.Ahmed OM, Manal A, Samia A. Evaluation of a new phenotypic method to screen for OprD-deficient mutant strains of Pseudomonas aeruginosa. Int J Curr Microbiol App Sci. 2017;6(2):1894-901.
16.Beig M, Taheri M, Arabestani MR. Frequency of Metallo-β-Lactamases and Carbapenemase Enzymes in Clinical Isolates of Pseudomonas aeruginosa. 2020. ;6(2):845-901.
17. Sandle, T. Microbial identification. Pharmaceutical Microbiology. 2016; pp.103-113.
18. Clinical and Laboratory Standards Institute (CLSI). CLSI M100 Performance Standards for Antimicrobial Susceptibility Testing .2020.
19.Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. Journal of Clinical Microbiology. 2005;43(7):3129-35.
20.Picao RC, Andrade SS, Nicoletti AG, Campana EH, Moraes GC, Mendes RE, et al. Metallo-β-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. Journal of clinical microbiology. 2008;74(36):45-22
21.Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN. Prevalence of metallo-β-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns. 2005;31(6):707-10.
22.MacPherson P, Valentine K, Chadderton V, Dardamissis E, Doig I, Fox A, et al. An outbreak of Pseudomonas aeruginosa infection linked to a “Black Friday” piercing event. PLoS Currents. 2017;14(8):412-22
23.Douglas MW, Mulholland K, Denyer V, Gottlieb T. Multi-drug resistant Pseudomonas aeruginosa outbreak in a burns unit—an infection control study. Burns. 2001;27(2):131-5.
24.Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351-68.
25.Sameni F, Esmaeili A, Dabiri H, Azargun R, Goudarzi H, Mohammadzadeh A. Distribution of Integron Class I in Drug Resistant Pseudomonas aeruginosa Isolated from Clinical Samples. Research in Medicine. 2020;21(8):765-22
26.Ruiz-Roldán L, Bellés A, Bueno J, Azcona-Gutiérrez JM, Rojo-Bezares B, Torres C, et al. Pseudomonas aeruginosa isolates from Spanish children: occurrence in faecal samples, antimicrobial resistance, virulence, and molecular typing. BioMed research international. 2018;24(10):874-22
27.Faghri J, Nouri S, Jalalifar S, Zalipoor M, Halaji M. Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan, Iran. BMC research notes. 2018;11(1):1-5.
28.Kainuma A, Momiyama K, Kimura T, Akiyama K, Inoue K, Naito Y, et al. An outbreak of fluoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene. Journal of infection and chemotherapy. 2018;24(8):615-22.
29.Ohara M, Kouda S, Onodera M, Fujiue Y, Sasaki M, Kohara T, et al. Molecular characterization of Imipenem‐resistant Pseudomonas aeruginosa in Hiroshima, Japan. Microbiology and immunology. 2007;51(3):271-7.
30.Vaez H KF, Salehi-Abargouei A, Sahebkar A. Metallo-beta-Lactamase-producing Pseudomonas aeruginosa in Iran: a systematic review and meta-analysis. Infez med. 2018;26(3):216-25.
31.Kalantar D, Mansori S, Razavi M. Emergence of Imipenem Resistance and Presence of Metallo--Lactamases Enzymes in Multi Drug Resistant Gram Negative Bacilli Isolated from Clinical Samples in Kerman, 2007-2008. Journal of Kerman University of Medical Sciences. 2010;17(3):208-14.
32.Haghi F, Keramati N, Hemmati F, Zeighami H. Distribution of integrons and gene cassettes among metallo-β-lactamase producing Pseudomonas aeruginosa clinical isolates. Infection Epidemiology and Microbiology. 2017;3(2):36-40.
33.Vahdani M, Azimi L, Asghari B, Bazmi F, Lari AR. Phenotypic screening of extended-spectrum ß-lactamase and metallo-ß-lactamase in multidrug-resistant Pseudomonas aeruginosa from infected burns. Annals of burns and fire disasters. 2012;25(2):78.
34.Lee M-F, Peng C-F, Hsu H-J, Chen Y-H. Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. International journal of antimicrobial agents. 2008;32(6):475-80.
_||_