تحلیل اثر رگبارهای متوالی بر ویژگیهای خاک، تولید رواناب سطحی و هدررفت خاک در خاکهای با پایداری متفاوت در کرتهای کوچک
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریعلی رضا واعظی 1 , حسین بیات 2 , سعید رحمتی 3
1 - گروه علوم خاک-دانشکده کشاورزی-دانشگاه زنجان
2 - دانشجوی کارشناسی ارشد فیزیک و حفاظت خاک دانشگاه زنجان
3 - دانشجوی فیزیک و حفاظت خاک دانشگاه زنجان
کلید واژه: بافت خاک, منطقه نیمهخشک, ساختمان خاک, جرم مخصوص ظاهری, رطوبت پیشین خاک,
چکیده مقاله :
آگاهی از تغییرات زمانی ویژگیهای خاک در هر رخداد طی بارش های متوالی برای تعیین دوره بحرانی که خاک حساس به فرآیندهای فرسایشی می شود، بسیار حائز اهمیت است. این پژوهش بهمنظور بررسی اثر رگبارهای متوالی بر تغییر ویژگیهای خاک، تولید رواناب سطحی و هدررفت خاک در 18 نوع خاک مختلف با اندازه خاکدانه یکسان (با قطر بین 4 و 6 میلیمتر)، انجام گرفت. آزمایش در کرتهای فرسایشی کوچک با طول 80 سانتی متر و عرض 60 سانتی متر با شیب 9 درصد طی هفت رگبار متوالی شبیه سازی شده با شدت 85 میلی متر بر ساعت و تداوم 30 دقیقه با فواصل پنج روز اجرا شد. نتایج نشان داد که تفاوتی معنیدار بین خاکها از نظر جرم مخصوص ظاهری، نگهداشت آب، تولید رواناب و هدررفت خاک بهوجود آمد (001/0>p). در رخداد رگبار اولیه بهدلیل فراوانی زیاد خاکدانههای پایدار و پایین بودن رطوبت پیشین خاکها، پایین ترین مقدار رواناب (4/14 میلی متر) و هدررفت خاک (792 گرم بر مترمربع) مشاهده شد. در رخداد رگبارهای متوالی بعدی گرچه تغییرات زیاد در نگهداشت آب در خاک مشاهده نشد، اما افزایش جرم مخصوص ظاهری خاک همچنان آشکار بود. روابطی معنی دار بین هدررفت خاک (58/0= 2R) و جرم مخصوص ظاهری خاک و نیز رطوبت پیشین خاک (75/0= 2R) وجود داشت. این پژوهش نشان داد که آگاهی از تغییرات جرم مخصوص ظاهری خاک و رطوبت پیشین خاک در رخدادهای باران طی سال میتواند در پیشبینی فرسایش خاک رخداد طی رگبارهای متوالی در یک منطقه مؤثر واقع شود. بهطور کلی تغییرات ویژگیهای فیزیکی خاک در هر رخداد نقشی مهم در افزایش حساسیت خاک به فرسایش طی رگبارهای متوالی دارد.
Knowledge of the change of soil properties in each event during sequence rainfalls is very important for recognition the critical period of that the soil would be susceptible to erosion processes is vital. This study was conducted to investigate the effect of sequence rainfalls on the changes of soil properties, runoff and soil loss in eighteen different soils with the same aggregate size (from 4 to 6 mm) using the simulated rainfalls. The experiments were performed at small erosion plots with 80 cm long and 60 cm wide under 9% slope steepness during seven sequence rainstorms with 80 mm h-1 in intensity for 30 min and 5-day interval. The results indicated that significant differences were among the soils in bulk density, water retention, runoff and soil loss (p< 0.001). The lowest runoff (14.4 mm) and soil loss (792 g m-2) were observed in the first rainfall event which was associated with higher percentage of water-stable aggregates and lower amount of soil moisture. In the sequential rainfalls, there was no obvious difference in soil water content, whereas bulk density was significantly increased. Significant relationships were found between soil loss and bulk density (R2= 0.58), and initial soil moisture (R2= 0.75). This study revealed that information on the changes of soil bulk density and initial soil moisture can sufficiently help to predict soil erosion during sequence rainfalls in an area. Wholly, the change of the physical soil properties plays an important role in increasing the soil’s susceptibility to erosion during sequence rainfalls.
اکبری، س. و واعظی، ع.ر. 1394. بررسی پایداری خاکدانهها در برابر ضربه قطرات باران در برخی خاکهای ناحیه نیمهخشک در شمال غرب زنجان. نشریه دانش آب و خاک، 25(2): 65-77.
بشارت، ف. و واعظی، ع.ر. 1394. تأثیر الگوی توزیع زمانی بارندگی طی رخداد بر رواناب و هدررفت خاک تحت بارانهای شبیهسازی شده. علوم و مهندسی آبخیزداری ایران، 9(29): 9-19.
حسنزاده، ح.، واعظی، ع.ر. و محمدی، م.ح. 1392. تغییرات رواناب در ابعاد کرت درنمونههای با بافت مختلف تحت رخدادهای یکسان باران شبیهسازی شده. تحقیقات آب و خاک ایران، 44(3): 243-253.
حمیدی نهرانی، س.، واعظی، ع.ر.، محمدی، م.ح. و صبا، ج. 1390. تغییرات زمانی تولید رواناب و هدررفت خاک تحت باران شبیهسازی شده. دوازدهمین کنگره علوم خاک ایران، دانشگاه تبریز. 12 تا 14 شهریور 1390.
زرینآبادی، ا. و واعظی، ع.ر. 1395. تولید رواناب و هدررفت خاک در مراتع با پوشش ضعیف تحت تأثیر کاربری زمین و جهت شخم. تحقیقات آب و خاک ایران، 47(1): 87-98.
شریفی، ا.، صادقی، س.ح.ر. و خالدی درویشیان، ع. و. 1393. تأثیرپذیری مؤلفههای رواناب و رسوب کرتهای آزمایشی کوچک از کاربرد پسماند آلی ویناس. تحقیقات آب و خاک ایران، 47(1): 499-508.
صادقی، س.ح.ر.، حزباوی، ز.، یونسی، ح. و بهزادفر، م. 1392. روند تغییرات هدررفت خاک و غلظت رسوب بر اثر کاربرد پلیآکریدآمیل. نشریه حفاظت منابع آب و خاک، 45(4): 53-67.
کاویان، ع.، عسگریان، ر.، جعفریان جلودار، ز. و بهمنیار، م.ع. 1392. اثر خصوصیات خاک بر تولید رواناب و رسوب در مقیاس مزرعه (مطالعه موردی بخشی از اراضی کشاورزی اطراف شهرستان ساری). نشریه دانش آب و خاک، 23(4): 45-57.
اسلامی، ف. و واعظی، ع.ر. 1394. بررسی تولید رواناب و رسوب تحت رخدادهای یکسان بارندگی در خاک کشاورزی با اندازه متفاوت خاکدانه. نشریه آب و خاک (علوم و صنایع کشاورزی)، 29(6): 1590-1600.
Amezketa, E., Singer, M.J. and Le Bissonnais, Y. 1996. Testing a new procedure for measuring water-stable aggregation. Soil Science Society of America Journal, 60(3): 888-894.
Bouwer, H. and Jackson, R.D. 1974. Determining soil properties, pp: 611-627, Drainage for Agriculture, ASA Monograph Noumber 17, Madison, WI.
Bi, N., Yang, Z., Wang, H., Fan, D., Sun, X. and Lei, K. 2011. Seasonal variation of suspended-sediment transport through the southern Bohai Strait. Estuarine, Coastal and Shelf Science, 93(3): 239-247.
Baihua F., Lachlan, T.H., Newham C.E. and Ramos, S. 2010. A review of surface erosion and sediment delivery models for unsealed roads, Soil Science Society of America Journal, 24(11), 834-840.
Bajracharya, R.M., Lal, R. and Hall, G.F. 1998. Temporal variation in properties of an uncropped, ploughed Miamian soil in relation to seasonal erodibility. Hydrological Processes, 12(7): 1021-1030.
Blanko, H. and Lal, R. 2008. Principles of Soil Conservation and Management. Springer Science, pp: 42-43.
Belicci, E. and Belicci, R. 2010. Study the influence initial soil moisture and use on the phenomena of soil flows from the slopes of ahydrograpical basin. Research Journal of Agricultural Science, 42(3): 201-210.
Canton, Y., Solé-Benet, A., Asensio, C., Chamizo, S. and Puigdefábregas, J. 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena, 77: 192–199.
Cattan D., Lan Z.H. and David, A.B. 2012. Effect of soil physical on runoff and sediment concentration under rain, Soil Science Society of America Journal, 20(10): 531-539.
Culley, J.L.B. 1993. Density and compressibility. Soil sampling and methods of analysis, 1: 529-539.
Duiker, S.W., Flanagan, D.C. and Lal, R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena, 45(2): 103-121.
Ekwue, E.I., Bharat, C. and Samaroo, K. 2009. Effect of soil type, peat and farmyard manure addition, slope and their interactions on wash erosion by overland flow of some Trinidadian soils. Biosystems engineering, 102(2): 236-243.
Endale D.M., Fisher D.S. and Steiner J.L. 2006. Hydrology of a zero-order southern Piedmont watershed through 45 year of changing agricultural land use, Monthly and seasonal rainfall runoff relationship, Journal of Hydrology, 316: 1-12.
Foltz, R.B., Copeland, N.S. and Elliot, W.J. 2009. Reopening abandoned forest roads in northern Idaho, USA: Quantification of runoff, sediment concentration, infiltration, and interrill erosion parameters. Journal of Environmental Management, 90(8): 2542-2550.
Gao, P. and Josefson, M. 2012. Event-based suspended sediment dynamics in a central New York watershed. Geomorphology, 139: 425-437.
Gee, G.W., Bauder, J.W., and Klute, A. 1986. Particle-size analysis. Methods of soil analysis. Part 1. Physical and Mineralogical Methods, 383-411.
Girmay, G., Singh, B.R., Nyssen, J. and Borrosen, T. 2009. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology, 376(1): 70-80.
Gupta O.P. 2002. Water in relation to soils and plants. Agrobios, India, pp: 31-34.
Imeson, A.C. and Vis, M. 1984. Assessing soil aggregate stability by water-drop impact and ultrasonic dispersion. Geoderma, 34(3-4), 185-200.
Jackson, M.L. 1967. Soil chemical analysis, Prentice-Hall of India, Private Limited, New Delhi.
Julien, P.Y. 2010. Erosion and sedimentation. Cambridge University Press, 280 P.
Jomaa, S., Barry, D.A., Brovelli, A., Sander, G.C., Parlange, J.Y., Heng, B.C.P. and Trompvan Meerveld, H.J. 2010. Effect of raindrop splash and transversal width on soil erosion: laboratory flume experiments and analysis with the Hairsine–Rose model. Journal of Hydrology, 395: 117–132.
Kramer, G. 2010. Dynamic model of daily rainfall, runoff and sediment yield for a Himalayan watershed, Soil Science Society of America Journal, 36: 951-960.
Laws, J.O. 1941. Measurements of the fall‐velocity of water‐drops and raindrops. Eos, Transactions American Geophysical Union, 22(3), 709-721.
Levy, G.J. and Mamedov, A.I. 2002. High-energy-moisture-characteristic aggregate stability as a predictor for seal formation. Soil Science Society of America Journal, 66(5): 1603-1609.
Morgan, R.P.C. 2005. Soil erosion and conservation. PP: 13-60. 3rd ed. Blackwell Publishing, Malden.
Nelson, D.W. and Sommers, L. 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2). pp: 539-579.
Oliveira, J.R.D., Pinto, M.F., Souza, W.D.J., Guerra, J.G. and Carvalho, D.F.D. 2010. Water erosion in a Yellow-Red Ultisol under different patterns of simulated rain. Revista Brasileira de Engenharia Agricola e Ambiental, 14(2): 140-147.
Ruiz-Sinoga, J.D. and Romero-Diaz, A. 2010. Soil degradation factors along a Mediterranean pluviometric gradient in southern Spain. Geomorphology 118(3-4): 359-368.
Sadeghi, S.H.R., Sharifi Moghaddam, E. and Khaledi Darvishan, A. 2016. Effects of subsequent rainfall events on runoff and soil erosion components from small plots treated by vinasse. Catena, 138: 1-12.
Soinne, H., Hyväluoma, J., Ketoja, E. and Turtola, E. 2016. Relative importance of organic carbon, land use and moisture conditions for the aggregate stability of post-glacial clay soils. Soil and Tillage Research, 158: 1-9.
Teramage, M.T., Onda, Y., Kato, H., Wakiyama, Y., Mizugaki, S. and Hiramatsu, S. 2013. The relationship of soil organic carbon to 210Pbex and 137Cs during surface soil erosion in a hill slope forested environment. Geoderma, 192: 59–67.
Truman, C.C., Potter, T.L., Nuti, R.C., Franklin, D.H. and Bosch, D.D. 2011. Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols. Agricultural Water Management, 98(8): 1189-1196.
Vaezi, A.R., Hasanzadeh, H. and Cerdà, A. 2016. Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. Catena, 142: 221-232.
Villatoro-Sánchez, M., Le Bissonnais, Y., Moussa, R. and Rapidel, B. 2015. Temporal dynamics of runoff and soil loss on a plot scale under a coffee plantation on steep soil (Ultisol), Costa Rica. Journal of Hydrology, 523: 409-426.
Wallas P.H., Duson L.J., and Miyer I.G. 2013. Yearly soil erodibility variation in Sevil. Soil Science Society of America Journal, 25: 321-329.
Wang, G., Wu, B., Zhang, L., Jiang, H. and Xu, Z. 2014. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. Journal of Hydrology, 514: 180-191.
Willy, K.N. 2011. The role of the aggregate size in soil resistance and decrease erosion. Soil Science Society of America Journal, 10(15): 111-120.
Wu, S.F., Wu, P.T., Feng, H. and Bu, C.F. 2010. Influence of amendments on soil structure and soil loss under simulated rainfall China’s loess plateau. African Journal of Biotechnology, 9(37): 6116-6121.
_||_