مقایسه و ارزیابی خسارت وسایل نقلیه سبک بر اساس نظریههای پایداری در سیلاب (مطالعه موردی: سیل شیراز)
محورهای موضوعی : هیدرولوژی، هیدرولیک و ساختمان های انتقال آبریحانه گل محمدی 1 , علیرضا شکوهی 2
1 - گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
2 - استاد گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
کلید واژه: سیل, وسیله نقلیه, پایداری, راهنمای بارش و رواناب AR&R, خسارت,
چکیده مقاله :
زمینه و هدف: ارزیابی خسارات ناشی از وقوع سیلهای ناگهانی در مناطق شهری یکی از دغدغههای مهم پس از وقوع آن است. وسایل نقلیه نیز مانند دیگر عناصر شهری در زمان وقوع سیل متحمل خساراتی میشوند که میبایست برای مدیریت سیل شهری آن ها را مد نظر قرار داد. مقادیر خسارت در اکثر مدلهای برآورد خسارت خودروها در سیلاب با فرض پایداری آنها و صرفاً برحسب عمق آب ارائهشدهاند درحالیکه متغیر مهم سرعت سیل نیز بر شدت خسارات وارده مؤثر است. در پژوهش حاضر ضمن ارزیابی هشت نظریه ارائهشده در راهنمای بارش و رواناب استرالیا (AR&R)، تلاشی صورت میگیرد تا بهترین نظریه بهمنظور ارائه الگوریتمی مناسب و ساده برای تعیین خسارت خودروهای سواری و سبک در سیل بهصورت تابعی از عمق و سرعت ارائه شود.روش پژوهش: برای دستیابی به هدف موردنظر ابتدا روابط و نمودارهای حد نهایی پایداری هشت نظریه ارائهشده در AR&R مورد ارزیابی و بررسی قرار گرفت و پس از حذف یکی از نظریات و اصلاح روابط دو نظریه Melbourne Water ارائه شده در سال 1996 و DPW ارائه شده در سال 1986، نقشه پایداری خودروهای سواری در سیل دروازه قرآن شیراز در تاریخ 5 فروردین 1398 برای هفت نظریه ارائه شده در این راهنما تولید شد در ادامه، با تلفیق نمودارهای حد پایداری هر نظریه با نمودار عمق- خسارت HAZUS-MH و زون بندی سطح زیر نمودار حد پایداری بهعنوان مناطق پایدار، الگوریتم تولید نقشه ریسک برای خودروهای سواری پایدار برای هر نظریه بهطور جداگانه تهیه شد. سپس نقشه ریسک در محدوده پارکینگ مجاور استخر تجمع آب در بالادست دروازه قرآن شیراز برای هر نظریه تولید و به کمک آنها مجموع خسارت برای خودرو پراید 131 بهعنوان خودرو شاخص محاسبه شد. درنهایت مقادیر خسارت ماکزیمم و هم چنین مجموع خسارت بهدستآمده از هرکدام از نظریه ها مورد بررسی قرار گرفت.یافتهها: از اصلیترین و مهمترین یافتههای این پژوهش، ارائه الگوریتم تعیین خسارت خودروهای سواری و سبک در محدودههای مشخصی از عمق و سرعت برای هر یک از نظریههای ارائهشده در AR&R میباشد که با استفاده از آنها نقشههای ریسک تولید شد. بعلاوه مجموع خسارات برای خودرو پراید 131 بهعنوان خودرو شاخص با استفاده از الگوریتمهای ارائه شده محاسبه شد که درنتیجه کمترین مقدار خسارت با استفاده از الگوریتم نظریه AR&R (1987)برابر با 10 میلیارد و 265 میلیون تومان و بیشترین مقدار خسارت تیز با استفاده از الگوریتم نظریه AR&R (2011) برابر با 14 میلیارد و 32 میلیون تومان به دست آمد.نتایج: با ارزیابیهای صورت گرفته مشخص شد استفاده از صرفاً عمق جریان سیلاب بهعنوان یک شاخص هیدرواستاتیک که عملاً در شرایط فعلی معیار محاسبه خسارت خودروها است از دقت لازم برخوردار نبوده و بهتر است از ترکیب سرعت و عمق و در واقع شاخص هیدرودینامیکی برای این منظور استفاده نمود. درعینحال ثابت شد که رابطه و حد نهایی پایداری ارائهشده در نظریه AR&R (2011) نسبت به سایر نظریهها بهمنظور ارائه مدلی برای تعیین خسارت وسایل نقلیه سواری و سبک در سیلاب بهعنوان تابعی از عمق و سرعت نتایج بهتر و قابلاعتمادتری را به همراه خواهد داشت. شایان ذکر است برای دستیابی به مقادیر هر چه دقیقتر خسارت خودروها در سیلاب، انجام مطالعات نظری و تجربی بیشتری با مدنظر قرار دادن انواع مختلف وسایل نقلیه ضروری است.
Introduction: Evaluation of damages caused by flash floods in urban areas is one of the most important concerns after their occurrence. Like other urban elements, vehicles suffer damage that should be considered for managing urban floods. The damage values in most car damage models in flood are presented with the assumption of their stability and purely in terms of depth, while the flood velocity as flood important variable is also effective on the severity of damages. In the present research, while evaluating the eight theories presented in the Australian Rainfall and Runoff Guideline (AR&R), an attempt is made to provide the best theory to provide a simple and accurate algorithm for determining the damage to sedan vehicles in flood as a function of depth and velocity.Methods: To achieve the goal of this research, the formulas and diagrams of the stability limit of eight theories presented in AR&R were evaluated and after deleting one of the theories and modifying the Melbourne Water presented in 1996 and DPW presented in 1986 formulas, the stability map of the sedan cars in Darwaze Quran flood on March 25, 2019 in Shiraz was produced for seven theories proposed in this guideline. Subsequently, by combining the stability limits of each theory with the HAZUS-MH depth-damage diagram and zoning below the stability limit diagram as stable areas, the risk map algorithm for stable sedan vehicles was provided separately for each theory. In the following, the risk map in the adjacent parking area of the water pool upstream of the Quran Gate of Shiraz for each theory and, with their help, the total damage for the Pride_131 was calculated as a common vehicle in Iran. Finally, the measures of maximum damage, as well as the total damages were obtained from each one.Results: One of the main and most important results of this research is providing an algorithm for determining the damage of the sedan vehicles in a certain range of depth and speed for each of the theories proposed in AR&R, which were used for producing the risk map. In addition, the total damages for the Pride-131 as an index car were calculated by the proposed algorithms. The minimum damage was obtained by using AR&R (1987) theory algorithm equal to 10 billion and 265 million toman and the maximum amount of damage was obtained by using achieved by using AR&R (2011) theory algorithm equal to 14 billion and 32 million toman.Conclusion: It was found that the use of the depth of flood as a hydrostatic index, which is now the criterion for calculating car damage, is not accurate enough and it is better to use velocity and depth composition as a hydrodynamic index for this purpose. At the same time, it was proved that among the other theories, the relation and the final limit of stability presented in the AR&R (2011) theory to provide a model for determining the damage to small and light vehicles in the flood as a function of depth and velocity has better and more reliable results. It is worth noting in order to achieve the more accurate damage amounts of vehicles in flood, more theoretical and experimental studies considering different types of vehicles are essential.
Amirmoradi, K., Shokoohi, A. (2020). Tangible Damage Caused By Flash Floods in Residential Areas. 18TH Iranian Hydraulic Conference. Tehran. https://civilica.com/doc/998835. (In Persian).
Amirmoradi, K., Shokoohi, A., Azizian. A. (2019). Evaluating Risk of Economic Loss due to River Flood in Urban areas. Iranian Journal of Soil and Water Research. 50(9). 2239-2259. DOI:10.22059/IJSWR.2019.283115.668228. (In Persian).
AusRoads (2008). Guide to Road Design, Part 5: Drainage Design. AusRoads Inc. 210p.
Bonham, A.J., Hattersley, R.T. (1967). Low-level causeways. Water Research Laboratory, Report no. 100. University of New South Wales, Australia.
Department of Public Works. (1986). Floodplain Development Manual, New South Wales Government,
Sydney, Australia.
Department of Infrastructure, Planning & Natural Resources. (2005). NSW Floodplain Development
Manual, New South Wales Government, Sydney, Australia.
EMA (1997). Four-Wheel-Drive Vehicle Operation. Australian Emergency Manuals Series, Part IV,
Manual 8: Skills for Emergency Services Personnel. Emergency Management Australia, Canberra.
EMA (1999). Managing the Floodplain. Australian Emergency Management Series, Part 3, Volume 3,
Guide 3, Emergency Management Australia, Canberra.
Federal Emergency Management Agency (FEMA). (2015). Multi-hazard loss estimation methodology. Flood model. Hazus-MH MR5 technical manual. Washington, DC: Department of Homeland Security. Mitigation Division 449p.
Francés, F., García-Bartual, R., Ortiz, E., Salazar, S., Miralles, J. L., Blöschl, G., Blume, T. (2008). Efficiency of non-structural flood mitigation measures: “room for the river” and “retaining water in the landscape.” London, UK: CRUE Research Report No I-6. 242p.
Golmohammadi, R., Shokoohi, A. (2021). Assessing Vehicle Damage in Flood in Urban Areas (Case Study: Shiraz Flood). Iran-Water Resources Research. 17(3). 282-301. (In Persian).
Golmohammadi, R., Shokoohi, A. (2022). Review and evaluation of theories and empirical models of vehicle stability in floods. Iranian Journal of Soil and Water Research. DOI: 10.22059/ijswr.2022.337500.669186. (In Persian).
Gordon, A.D., Stone, P.B. (1973). Car stability on-road floodways. National Capital Development Commission, Report no. 73/12. Water Research Laboratory, University of New South Wales, Australia.
Heidary, K, Gharadaghai, H, Javaheri, A. (2019). Investigating the causes and factors of floods in Shiraz (Case study: Quran Gate flood in Shiraz in 1398). National Conference on Natural Resources and Sustainable Development in Central Zagros, Sep. 2019, Shahrekord, Iran. (In Persian).
Institution of Engineers, Australia (1987). Australian Rainfall and Runoff, Vol. 1&2. (Ed: Pilgrim, D.H.)
Institution of Engineers, Australia.
Karbasi, M. Shokoohi, A. & Saghafian, B. (2019). Estimating the number of fatalities due to flash floods in residential areas. Journal of Iran-Water Resources Research, 15:236-246 (in Persian)
Keller, R.J., Mitsch, B. (1993). Safety aspects of the design of roadways as floodways. Urban Water Research Association of Australia. ISBN: 1875298703.
Melbourne Water (1996). Melbourne Water Land Development Manual, Appendix A: Floodway Safety
Criteria. Melbourne Water Technical Working Group: R Sutherland, T Jones, N Craigie.
Moore K A & Power R K (2002). Safe buffer distances for off-stream earth dams. Aust J of Water
Resources, IEAust, 2002; 6(1):1-16.
Shahsavandi, M., Attari, J., Vafaeinezhad, A.R., Eftekhari, M. (2017). Development of Digital Model for Estimating Flood Damage to Buildings By Considering Speed and Depth of Flow. 5th Comprehensive Conference On Flood Engineering and Management. Tehran. https://civilica.com/doc/741650. (In Persian).
Shand T.D., Cox R.J., Blacka M.J. & Smith G.P. (2011). Australian rainfall and runoff (AR&R). Revision project 10: appropriate safety criteria for vehicles. Report Number: P10/S2/020.
U.S. Army Corps of Engineers (USACE). (2009). Economic guidance memorandum, 09-04, generic depth-damage relationships for vehicles. Washington, DC. 9p.
White G. F. (1945). Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States. Ph.D. Thesis, University of Chicago, USA.
_||_Amirmoradi, K., Shokoohi, A. (2020). Tangible Damage Caused By Flash Floods in Residential Areas. 18TH Iranian Hydraulic Conference. Tehran. https://civilica.com/doc/998835. (In Persian).
Amirmoradi, K., Shokoohi, A., Azizian. A. (2019). Evaluating Risk of Economic Loss due to River Flood in Urban areas. Iranian Journal of Soil and Water Research. 50(9). 2239-2259. DOI:10.22059/IJSWR.2019.283115.668228. (In Persian).
AusRoads (2008). Guide to Road Design, Part 5: Drainage Design. AusRoads Inc. 210p.
Bonham, A.J., Hattersley, R.T. (1967). Low-level causeways. Water Research Laboratory, Report no. 100. University of New South Wales, Australia.
Department of Public Works. (1986). Floodplain Development Manual, New South Wales Government,
Sydney, Australia.
Department of Infrastructure, Planning & Natural Resources. (2005). NSW Floodplain Development
Manual, New South Wales Government, Sydney, Australia.
EMA (1997). Four-Wheel-Drive Vehicle Operation. Australian Emergency Manuals Series, Part IV,
Manual 8: Skills for Emergency Services Personnel. Emergency Management Australia, Canberra.
EMA (1999). Managing the Floodplain. Australian Emergency Management Series, Part 3, Volume 3,
Guide 3, Emergency Management Australia, Canberra.
Federal Emergency Management Agency (FEMA). (2015). Multi-hazard loss estimation methodology. Flood model. Hazus-MH MR5 technical manual. Washington, DC: Department of Homeland Security. Mitigation Division 449p.
Francés, F., García-Bartual, R., Ortiz, E., Salazar, S., Miralles, J. L., Blöschl, G., Blume, T. (2008). Efficiency of non-structural flood mitigation measures: “room for the river” and “retaining water in the landscape.” London, UK: CRUE Research Report No I-6. 242p.
Golmohammadi, R., Shokoohi, A. (2021). Assessing Vehicle Damage in Flood in Urban Areas (Case Study: Shiraz Flood). Iran-Water Resources Research. 17(3). 282-301. (In Persian).
Golmohammadi, R., Shokoohi, A. (2022). Review and evaluation of theories and empirical models of vehicle stability in floods. Iranian Journal of Soil and Water Research. DOI: 10.22059/ijswr.2022.337500.669186. (In Persian).
Gordon, A.D., Stone, P.B. (1973). Car stability on-road floodways. National Capital Development Commission, Report no. 73/12. Water Research Laboratory, University of New South Wales, Australia.
Heidary, K, Gharadaghai, H, Javaheri, A. (2019). Investigating the causes and factors of floods in Shiraz (Case study: Quran Gate flood in Shiraz in 1398). National Conference on Natural Resources and Sustainable Development in Central Zagros, Sep. 2019, Shahrekord, Iran. (In Persian).
Institution of Engineers, Australia (1987). Australian Rainfall and Runoff, Vol. 1&2. (Ed: Pilgrim, D.H.)
Institution of Engineers, Australia.
Karbasi, M. Shokoohi, A. & Saghafian, B. (2019). Estimating the number of fatalities due to flash floods in residential areas. Journal of Iran-Water Resources Research, 15:236-246 (in Persian)
Keller, R.J., Mitsch, B. (1993). Safety aspects of the design of roadways as floodways. Urban Water Research Association of Australia. ISBN: 1875298703.
Melbourne Water (1996). Melbourne Water Land Development Manual, Appendix A: Floodway Safety
Criteria. Melbourne Water Technical Working Group: R Sutherland, T Jones, N Craigie.
Moore K A & Power R K (2002). Safe buffer distances for off-stream earth dams. Aust J of Water
Resources, IEAust, 2002; 6(1):1-16.
Shahsavandi, M., Attari, J., Vafaeinezhad, A.R., Eftekhari, M. (2017). Development of Digital Model for Estimating Flood Damage to Buildings By Considering Speed and Depth of Flow. 5th Comprehensive Conference On Flood Engineering and Management. Tehran. https://civilica.com/doc/741650. (In Persian).
Shand T.D., Cox R.J., Blacka M.J. & Smith G.P. (2011). Australian rainfall and runoff (AR&R). Revision project 10: appropriate safety criteria for vehicles. Report Number: P10/S2/020.
U.S. Army Corps of Engineers (USACE). (2009). Economic guidance memorandum, 09-04, generic depth-damage relationships for vehicles. Washington, DC. 9p.
White G. F. (1945). Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States. Ph.D. Thesis, University of Chicago, USA.