ارزیابی پایداری برآوردهای مدل بیشینه آنتروپی برای مدلسازی فرسایش شیاری
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریمریم پورنادر 1 , سادات فیض نیا 2 , حسن احمدی 3 , حاجی کریمی 4 , حمیدرضا پیروان 5
1 - دکتری آبخیزداری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات
2 - استاد دانشگاه تهران
3 - استاد دانشگاه آزاد اسلامی واحد علوم و تحقیقات
4 - استاد دانشگاه ایلام
5 - دانشیار پژوهشکده حفاظت خاک و آبخیزداری کشور
کلید واژه: فرسایش خاک, سامانه اطلاعات جغرافیایی, پایداری, یادگیری ماشین,
چکیده مقاله :
لازمه مدیریت فرسایش خاک، ارائه راهکارهای مناسبی میباشد که با شناخت از وضعیت فرسایش خاک حاصل میشود. هدف از مطالعه حاضر، مدلسازی پتانسیل فرسایش شیاری با استفاده از مدل بیشینه آنتروپی و بررسی پایداری مدل به-منظور آگاهی از حساسیتپذیری این فرسایش در حوضه آبخیز گلگل استان ایلام است. بدین منظور، فاکتورهای زمین- محیطی برای استفاده در فرایند مدلسازی انتخاب شد. افزون بر این، موقعیت 157 واقعه فرسایش شیاری با استفاده از سیستم موقعیتیاب جغرافیایی (GPS) ثبت شد. این وقایع در قالب دو گروه آموزش و اعتبارسنجی با نسبت 70 به 30 کلاسبندی شد. بهمنظور ارزیابی پایداری مدل، کلاسبندیهای مذکور سه بار تکرار شد و بنابراین، سه نمونه مجموعه داده (D1، D2 و D3) آماده شد. ارزیابی کارایی مدل با استفاده از سطح زیر منحنی ROC صورت پذیرفت. با توجه به نتایج پایداری، تمامی مجموعه دادهها مقادیر سطح زیر منحنی خوبی را کسب نمودند و ازنظر کارایی برازش (3/1 = RAUC) و پیشبینی (1/3 = RAUC) پایدار میباشند. بهبیاندیگر، نتایج ثابت نمود زمانی که دادههای کالیبراسیون و اعتبارسنجی تغییر پیدا نمود مدل کاملاً پایدار باقی ماند. علاوه بر این، مشخص شد که مدل حداکثر آنتروپی (MaxEnt) قادر به تولید نقشه حساسیتپذیری فرسایش شیاری است. از سوی دیگر، برمبنای آنالیز حساسیت، مشخص شد که مهمترین اجزا در مدل-سازی حساسیتپذیری فرسایش شیاری سنگشناسی و فاصله از آبراهه میباشد. روششناسی تطبیقیافته بهعنوان یک رویکرد مؤثر برای برنامهریزی کاربری اراضی و مدیریت ریسک فرسایش سودمند میباشد.
Soil erosion management requires providing appropriate solutions that can be achieved with knowing soil erosion situation. The aim of this study, modeling rill erosion potentially by using maximum entropy (MaxEnt) and investigation of its robustness to knowing about rill erosion susceptibility in the Golgol watershed, Ilam province. To this purpose, different geo-environmental factors were selected to be employed in the modeling process. In addition, 157 rill erosion events were recorded by a global positioning system (GPS). These events were then classified into two classes of training and validation with a ratio of 70:30. To evaluate model robustness, these classifications were repeated three times, and therefore, three sample datasets (D1, D2, and D3), were prepared. The area under receiver operating characteristics (AUC) curve was used for evaluating the performance of the model. Regarding the robustness results, all of the datasets obtained good AUC values and all of them were robust for both the goodness-of-fit (RAUC =1.3) and prediction performance (RAUC =3.1). In other words, the results demonstrated that the model remained quite stable when the calibration and validation data were changed. In addition, we found that the MaxEnt model is capable to produce rill erosion susceptibility map. Furthermore, based on the sensitivity analysis, it found that the most important components in rill erosion susceptibility modeling are lithology and distance from stream. The adopted methodology can be useful as an efficient approach for land use planning and erosion risk management.
رجبزاده، ف.، غیاثی، س.س. و رحمتی، الف. 1397 .کارایی الگوریتم حداکثر آنتروپی و سامانه اطالعات جغرافیایی در ارزیابی حساسیتپذیری زمینلغزشهای کمعمق. نشریه حفاظت منابع آب و خاک، 8(2): 57-73.
جعفری گرزین، ب. و کاویان، ع. 1388 .ارزیابی وقوع فرسایش خندقی در حوضه آبخیز سرخآباد مازندران با استفاده از سنجشازدور و سامانه اطالعات جغرافیایی. مجله علوم و مهندسی آبخیزداری، 3(7): 55-85.
رفاهی، ح. 1382 .فرسایش آبی و کنترل آن )چاپ چهارم(. انتشارات دانشگاه تهران، 671 ص.
شادفر، ص. 1390 .بررسی فرسایش خندقی با استفاده از روش تحلیل سلسله مراتبی در شهرستان رودبار استان گیالن. فصلنامه پژوهش های فرسایش محیطی، 1(3): 16-30.
صابرچناری، ک.، بهرهمند، ع.، بردی شیخ، و. و بایرام کمکی، چ. 1398 .پهنهبندی خطر فرسایش خندقی در حوضه آبخیز قرناوه استان گلستان. مجله زمین شناسی مهندسی، 13(1): 69-94.
غیاثی، س.س.، رجبزاده، ف.، ناجی راد، س.، فیضنیا، س. و نظری سامانی، ع.الف. 1396 .تعیین عوامل مؤثر در وقوع زمینلغزشهای کمعمق در حوضه آبخیز خیاوچای. نشریه علمی- پژوهشی مهندسی و مدیریت آبخیز، 9(2): 140-154.
محمد پور، س.، روحانی، ح.، قربانی واقعی، ح.، سیدیان، س.م. و فتحآبادی، الف. 1396 .مدلسازی غلظت رسوب حاصل از فرسایش شیاری با استفاده از سیستم نروفازی (ANFIS) در منطقه نیمهخشک. مرتع و آبخیزداری، مجله منابع طبیعی ایران، 70(1): 219-234.
محمدی ترکاشوند، ع.، نیککامی، د.، اسفندیاری، م. و علویپناه، س. 1389 .بررسی چند روش تهیه نقشه فرسایش شیاری با استفاده از RS و GIS. .نشریه علمی- پژوهشی مهندسی و مدیریت آبخیز، 2(3): 150- 160.
میرزایی، س.، زینیوند، ح. و حقیزاده، ع. 1395 .شبیهسازی رسوب معلق روزانه و بررسی تأثیر تغییر کاربری اراضی بر آن در حوضه آبخیز گلگل، ایالم. پژوهشنامه مدیریت حوضه آبخیز، 7(14): 48-59.
Akgün, A. and Türk, N. 2011. Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region NW Turkey. Geoscience, 37(9): 1515-1524.
Angileri, S.E., Conoscenti, C., Hochschild, V., Märker, M., Rotigliano, E. and Agnesi, V. 2016. Water erosion susceptibility mapping by applying stochastic gradient treeboost to the Imera Meridionale River basin (Sicily, Italy). Geomorphology, 262: 61-76.
Auerswald, K., Fiener, P. and Dikau, R. 2009. Rates of sheet and rill erosion in Germany—a meta-analysis. Geomorphology, 111(3-4): 182-193.
Bagnold, R.A. 1996. An approach to the sediment transport problem from general physics. US Geological Survey Paper, 1-42.
Bahadori, N. 2014. Measuring soil loss using the roots of trees and rills and comparison with MPSIAC, M.Sc Thesis. Islamic Azad University, Arsanjan Branch, 190 pp.
Bayramin, I., Dengiz, O., BAŞKAN, O. and Parlak, M. 2003. Soil erosion risk assessment with ICONA model; case study: Beypazarı area. Turkish Journal of Agriculture and Forestry, 27(2): 105-116.
Brunner, G.W. 1995. HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0, DTIC Document.
Bruno, C., Stefano, C.D. and Ferro, V. 2008. Field investigation on rilling in the experimental Sparacia area, South Italy. Earth Surface Processes and Landforms, 33, 263 -279.
Bui, D.T., Lofman, O., Revhaug, I. and Dick, O. 2011. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural hazards, 59: 1413-1444.
Cama, M., Lombardo, L., Conoscenti, C. and Rotigliano, E. 2017. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology, 288: 52-65.
Chaplot, V., Giboire, G., Marchand, P. and Valentin, C. 2005. Dynamic modelling for linear erosion initiation and development under climate and land-use changes in northern Laos. Catena, 63(2-3): 318-328.
Conoscenti, C., Agnesi, V., Angileri, S., Cappadonia, C.R. and Märker, M. 2013. A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. Environment Earth Science, 70(3): 1179-1195.
Conoscenti, C., Agnesi, V., Cama, M., Caraballo‐Arias, NA. and Rotigliano, E. 2018. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land Degradation and Development, 29(3): 724-736.
Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V. and Märker, M. 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology, 204: 399-411.
Dewitte, O., Daoudi, M., Bosco, C. and Van Den Eeckhaut, M. 2015. Predicting the susceptibility to gully initiation in data-poor regions. Geomorphology, 228: 101-115.
Elith, J.S., Phillips, T., Hastie, M., Dudík, Y., Chee, L. and Yates, C. 2010. A statistical explanation of MaxEnt for ecologists. Journal of Diversity and Distributions, 17(1): 43–57.
Flanagan, D.C., Ascough, J.C., Geter, W.F. and David, O. 2005. Development of a hillslope erosion module for the object modeling system. ASAE Annual International Meeting, 1-12.
Ghorbaninejad, S., Falah, F., Daneshfar, M., Haghizadeh, A. and Rahmati, O. 2017. Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2): 167- 187.
Graham, C.H.J., Elith, R.J., Hijmans, A., Guisan, A.T., Peterson, G. and Loiselle, B.A. 2008. The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45: 239–247.
Hosseini, S.M., Mosaedi, A., Naseri, K. and Golkarian, A. 2012. Identification of the most effective elements on rill erosion in the hill slope units of Mashhad south west, Iran. Geography and Environmental Hazarda, 2: 87- 99.
Jiang, F., Zhan, Z., Chen, J., Lin, J., Wang, MK., Ge, H. and Huang, Y. 2018. Rill erosion processes on a steep colluvial deposit slope under heavy rainfall in flume experiments with artificial rain. Catena, 169: 46-58.
Jurchescu, M. and Grecu, F. 2015. Modelling the occurrence of gullies at two spatial scales in the Olteţ Drainage Basin (Romania). Natural Hazards, 79(1): 255-289.
Kornejady, A., Ownegh, M. and Bahremand, A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152: 144-162.
Lucà, F., Conforti, M. and Robustelli, G. 2011. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134(3-4): 297-308.
Magliulo, P. 2012. Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environment Earth Science, 67(6): 1801-1820.
Märker, M., Pelacani, S. and Schröder, B. 2011. A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology, 125(4): 530- 540.
Moreno-de las Heras, M., Espigares, T., Merino-Martín, L. and Nicolau, J.M. 2011. Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes. Catena, 84, 114-124.
Nandi, A. and Shakoor, A. 2010. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1): 11-20.
Ownegh, M. and Nohtani, M. 2003. Relationship between geomorphologic units and erosion and sediment yield in kashidar watershed , Golestan province, Iran. 13th International soil Conservation Organization Conference – Brisbane.
Pandey, V.K., Pourghasemi, H.R. and Sharma, M.C. 2018. Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto International, 33: 24-37.
Park, N.W. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental datasets. Environment Earth Science, 73(3): 937-949.
Phillips, S., Anderson, R. and Schapire, R. 2006. Maximum entropy modelling of species geographic distributions. Ecological Modeling, 190: 231–259.
Pourghasemi, H.R., Moradi, H.R. and Fatemi Aghda, S.M. 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural hazards, 69(1): 749-779.
Pourghasemi, H.R., Yousefi, S., Kornejady, A. and Cerdà, A. 2017. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Science of the Total Environment, 609: 764-775.
Pournader, M., Ahmadi, H., Feiznia, S., Karimi, H. and Peirovan, H.R. 2018. Spatial prediction of soil erosion susceptibility: an evaluation of the maximum entropy model. Earth Science, 47: 96-111.
Rahmati, O., Haghizadeh, A., Pourghasemi, H.R. and Noormohamadi, F. 2016. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2): 1231-1258.
Rahmati, O., Naghibi, S.A., Shahabi, H., Bui, D.T., Pradhan, B. and Azareh, A. 2018. Groundwater spring potential modelling: comprising the capability and robustness of three different modeling approaches. Journal of Hydrology, 565: 248-261.
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R. and Feizizadeh, B. 2017. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298: 118-137.
Van Westen, C. J. 1997. Statistical landslide hazard analysis. ILWIS, 2: 73-84. Williams, G.P. 1983. Paleohydrological methods and some examples from Swedish fluvial environments I. Cobble and boulder deposits. Geografiska Annaler, Series A, 65(3-4): 227-243.
Wirtz, S., Seeger, M. and Ries, J.B. 2012. Field experiments for understanding and quantification of rill erosion processes. Catena, 91: 21-34.
Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A.K., Pourghasemi, H.R., Zakeri, M.A. and Sadighi, F. 2018. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena, 161: 1-13.
Zakerinejad, R. and Märker, M. 2014. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geography and Environmental Hazards, 37(1): 67-76.
Zhu, C. and Wang, X. 2009. Landslide susceptibility mapping: A comparison of information and weights-of evidence methods in Three Gorges Area. International Conference on Environmental Science and Information application Technology, 187: 342-346.
_||_