مقایسه عملکرد مفصلهای درختی سی-واین و دی- واین در تحلیل چندمتغیره مشخصههای بارش
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریمریم شفائی 1 , رسول میرعباسی 2
1 - دانش آموخته دکتری مهندسی منابع آب، گروه مهندسی آب دانشگاه تبریز، تبریز، ایران.
2 - دانشیار گروه مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران.
کلید واژه: مفصل, بارش, جفت-مفصل, واین, توزیع توأم,
چکیده مقاله :
در این مطالعه، قابلیتهای مفصلهای درختی واین، نظیر توانایی در تجزیه توزیعهای چند متغیره به توزیعهای دوبعدی، انعطاف آن در مسائل با ابعاد بالا و استفاده از وابستگی شرطی بین متغیرها مورد بررسی قرار گرفته است. هدف استفاده از ساختارهای درختی سی-واین و دی-واین جهت تعیین تابع توزیع احتمالاتی توأم چهاربعدی مشخصههای مهم رویدادهای بارش 26 ساله ایستگاه بارش سریمونا واقع در کشور ایتالیا، شامل ماکزیمم شدت بارش، عمق کل بارش، مدت زمان دوره مرطوب و دوره خشک میباشد. بدین منظور، ابتدا ترکیبی از مناسبترین خانوادههای مفصل ارشمیدسی و بیضوی جهت برازش بر جفت- مفصلهای هر یک از ساختارهای سی-واین و دی- واین مشخص شدند. توابع توزیع توأم بهینه ساختارهای سی- واین و دی- واین نیز با استفاده از توابع چگالی زنجیرهای محاسبه و میزان انطباق آنها با مفصل تجربی چهاربعدی مشخصههای بارش متناظر مورد بررسی قرار گرفتند. در نهایت میزان دقت ساختارهای درختی سی-واین و دی-واین در تعیین توابع توزیع توأم مشخصههای مهم بارش، مقایسه گردید. نتایج نشان داد که ساختار سی-واین R-D-L-M دارای مینیمم مقدار معیارهای ارزیابی 029/0RMSE= و 022/0MAE= و همچنین ماکزیمم 35/0= value-P و 998/0 R2=در بین کلیه ساختارهای سی-واین و دی-واین میباشد و در نتیجه برای تحلیل فراوانی مشخصات بارش ایستگاه سریمونا ایتالیا دارای بیشترین دقت میباشد.
In this study, the basic features of a tree vine copula such as the ability to decompose multivariate distributions into two-dimensional distributions, its flexibility in high-dimensional problems, and the use of conditional dependencies between variables have been considered. The purpose is to use C-Vine and D-Vine structures to determine the four-dimensional probabilistic distribution function of important characteristics of precipitation events of Cremona rain station located in Italy including maximum precipitation intensity total precipitation depth, wet period duration and dry period. So that, a combination of the most suitable Archimedean and elliptical copulas families was identified to fit the pair-copulas of each of the C-Vine and D-Vine structures. The optimal combined distribution functions of C-Vine and D-Vine structures were also calculated using chain density functions and compared with the four-dimensional experimental copula of important precipitation characteristics. Finally, the accuracy of C-Vine and D-Vine tree structures in determining the combined distribution functions of important precipitation characteristics was compared. The results showed that the RDLM C-Vine structure has a minimum value of evaluation criteria RMSE = 0.029 and MAE = 0.022, as well as a maximum of P-value = 0.35 and R2 = 0.998 among all C-Vine and D-Vine structures. As a result, it has the highest accuracy for frequency analyzing the of precipitation characteristics of Cremona station in Italy.
امینی، س.، ر. زارع بیدکی، ر. میر عباسی، و م. شفائی. 1399. تحلیل چندمتغیره سیل با استفاده از مفصلهای Vine در حوزه آبریز بازفت استان چهارمحال و بختیاری. نشریه مرتع و آبخیزداری، مجله منابع طبیعی ایران. (10)4: 690-674.
خانی تملیه، ذ.، ح. رضائی و ر. میرعباسی. 1399. کاربرد توابع مفصل تودرتو برای تحلیل فراوانی چهار متغیره خشکسالی های هواشناسی (مطالعه موردی: غرب ایران). نشریه حفاظت منابع آب و خاک. سال دهم، 1: 112-93.
شفائی، م.، ا. فاخری فرد، ی. دین پژوه، و ر. میرعباسی. 1395. مدلسازی تابع توزیع توأم چهاربعدی ویژگی های مهم سیل با استفاده از ساختار سی-واین. نشریه آبیاری و زهکشی ایران. (10)3 : 337-327.
عبداللهی، س، ع.م، آخوندعلی و ر. میرعباسی. مدل سازی احتمالاتی و داده مبنای بارش- رواناب با بهره گیری از توابع چندمتغیره مفصل. هفدهمین کنفرانس هیدرولیک ایران 1397.
Aas, K., C. Czado, A. Frigessi and H. Bakken. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44 (2): 182–198.
Ariff, N.M., A.A. Jemain, K. Ibrahim and W.Z. Wan Zin. 2012. IDF relationships using bivariate copula for storm. events in Peninsular Malaysia. Journal of Hydrology, 470–471, 158–171.
Bedford, T. and R.Cooke. 2001. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 32 (1): 245–268.
Bedford, T. and R. Cooke. 2002. Vines – A new graphical model for dependent random variables, Annals of Statistics. 30 (4), 1031–1068.
Brechmann, E. C., C. Czado and K. Aas. 2012. Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics, 40 (1): 68-85.
Buliah, N.M. and W. Yie. 2020. Modelling of extreme rainfall using copula. AIP Conference Proceedings 2266, 090007.
Christopher Dzupire, N., P. Ngarea L. Odongoac, 2020. A copula based bi-variate model for temperature and rainfall processes. Scientific African, 8: e00365.
Czado C. .2010. Pair-Copula Constructions of Multivariate Copulas. In: Jaworski P., Durante F., Härdle W., Rychlik T. (eds) Copula Theory and Its Applications. Lecture Notes in Statistics, vol 198. Springer, Berlin, Heidelberg.
De Michele, C and G. Salvadori. 2003. A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas .Journal of Geophysical Research.108(D2): 4067.
Dodangeh, E., Singh, V.P. and B.T. Pham. 2020. Flood Frequency Analysis of Interconnected Rivers by Copulas, Water Resources Management. 34: 3533–3549.
Genest, C. and L.P. Rivest. 1993. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88 (423): 1034–1043.
Ghafori, V., H. Sedghi and R.A. Sharifan. 2020. Regional Frequency Analysis of Droughts Using Copula Functions (Case Study: Part of Semiarid Climate of Fars Province, Iran). Iranian Journal of Science and Technology 44: 1223–1235. https://doi.org/10.1007/s40996-019-00297-5
Ghosh, S. 2010. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrological Processes. 24: 3558–3567.
Gräler, B., M. J. Van den Berg, S.Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and Verhoest, N. E. C. 2013. Multivariate return de Paris: Paris, 229–231
Joe, H. 1996. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, and M. D. Taylor (Eds.), Distributions with fixed marginal and related topics. Hayward: Institute of Mathematical Statistics.28: 120-141.
Kao, SC. and RS. Govindaraju. 2010. A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1–2):121–134.
Kendall, M. G. 1938. A new measure of rank correlation, Biometrika, 30(1-2): 81–93.
Kurowicka, D., R. Cooke. 2006. Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, Chichester.
Kuchment, L. S. and V. N. Demidov. 2013. On the Application of Copula Theory for Determination of Probabilistic Characteristics of Spring flood., Russian Meteorology and Hydrology, 38(4): 263–271.
Mirabbasi, R., E.N. Anagnostou, A. Fakheri-Fard, Y. Dinpashoh and S. Eslamian. 2013. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. Journal of Hydrology, 492: 35–48.
Ni, L., D. Wang, J. Wu, Y. Wang, Y. Tao and J. Zhang. 2020. Vine copula selection using mutual information for hydrological dependence modeling. Environmental Research. 186: 10-25.
Pandey, P.K., L. Das. and D. Jhajharia. 2018. Modelling of interdependence between rainfall and temperature using copula. Modeling Earth Systems and Environment, 4: 867–879.
Salvadori, G. and C. De Michele. 2015. Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. Journal of Hydrology, 526: 101-115.
Sklar, A. 1959. Fonction de re’partition a’ n dimensions et leurs marges, vol. 8. Publications de L’Institute de Statistique, Universite’ de Paris: Paris, 229–231.
Shafaei, M., A. Fakheri-Fard, Y. Dinpashoh, R. Mirabbasi and C. De Michele. 2017. Modeling flood event characteristics using D-vine structures, Theoretical and Applied Climatology, 130: 713–724.
Shiau, J. T. 2006. Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resources Management, 20: 795–815.
Sraj, M., N. Bezak and M. Brilly. 2015. Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrologic Processes, 29 (2): 225–238.
Vernieuwe, H., S. Vandenberghe, B. De Baets and NEC. Verhoest. 2015. A continuous rainfall model based on vine copulas. Hydrology and Earth System Science, 19(6): 2685–2699.
Yee, K.C., J. Suhaila, Y. Yusof, and F.H. Mean. 2014. Bivariate copula in fitting rainfall data. AIP Conference Proceedings 1605, 986.
_||_