مدلسازی رفتار جریان محلول صمغ بومی قدومه شهری به عنوان تابعی از نرخی برشی، غلظت و دما و مقایسه آن با صمغ تجاری زانتان
محورهای موضوعی : میکروبیولوژی مواد غذاییهادی باقری 1 , زینب گرایلی 2 , مهدی کاشانی نژاد 3
1 - دانشجوی دکتری مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - دانشجوی کارشناسی ارشد و مسئول آزمایشگاه، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - استاد گروه مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
کلید واژه: خصوصیات رئولوژیکی, صمغ قدومه شهری, مدل بینگهام,
چکیده مقاله :
مقدمه: با توجه به افزایش روزافزون مصرف هیدروکلوئید ها در صنایع غذایی و قیمت بالای صمغ های تجاری، به کارگیری و استفاده از صمغ های بومی اهمیت فراوانی یافته است. از این رو مطالعه صمغ های بومی و مقایسه آنها با صمغ های تجاری در شرایط مختلف فرآوری برای استفاده از آنها در صنعت لازم و ضروری است. مواد و روش ها: در این مطالعه خصوصیات رئولوژیکی و ویسکوزیته ظاهری محلول صمغی دانه قدومه شهری در چهار غلظت مختلف (5/0 تا 2 درصد)، دما (30، 35 و 40 درجه سانتی گراد) و سطح سرعت چرخشی (تا 200 دور بر دقیقه) مورد بررسی قرار گرفت و با صمغ تجاری زانتان مورد مقایسه قرار گرفت. همچنین به منظور بررسی و برازش دادهها از دو مدل قانون توان و بینگهام استفاده شد. یافته ها: نتایج نشان داد که با افزایش دما و سرعت چرخشی، ویسکوزیته ظاهری هر دو صمغ کاهش و با افزایش غلظت هر دو، ویسکوزیته ظاهری افزایش یافت. ضریب شاخص قوام محلول صمغ قدومه شهری در مقایسه با زانتان کم تر بود و در یک غلظت ثابت، صمغ زانتان از ضریب قوام بالاتری نسبت به صمغ قدومه شهری برخوردار است. نتایج مربوط به مدل سازی و برازش داده ها نشان داد که بهترین مدل برای برازش داده های تجربی قدومه شهری مدل بینگام بود، این در حالی است که مدل قانون توان برازش بهتری نسبت به مدل بینگهام برای داده های تجربی محلول صمغی زانتان داشت. نتیجه گیری: صمغ قدومه شهری خصوصیات رئولوژیکی مشابهی با صمغ تجاری زانتان دارند و بنابراین امکان به کارگیری آن همچون صمغ تجاری زانتان وجود دارد.
Introduction: Regarding the increase of hydrocolloids application in food industry and high price of commercial gums, the use of local hydrocolloids might be considered quite important. Therefore the study of local gums and its comparison with the commercial gums in different operations in industry might be considered essential. Materials and Methods: In this research, the rheological behavior and apparent viscosity of Qoudomeh shahri gum was investigated at four different concentrations (0.5-2%), temperatures (30–40°C with 5 degree intervals), and rotational speeds (up to 200 rpm) and was compared with commercial Xanthan gum and also for modeling and fitting the experimental data tow Power law and Bingham models were applied. Results: The results showed that by increasing the temperature and rotational speed the apparent viscosity of both gums decreased and by increasing the concentration of both gums the apparent viscosity increased. Consistency index in Qodumeh shahri gum solutions was lower than Xanthan gum solutions and in a constant concentration, the Xanthan gum solution has a higher consistency index. Evaluation of the rheological models showed that the power law model described the rheological behavior of the xanthan solutions with high determination coefficients, R2 and low SE, while the Bingham model described the rheological behavior of the Qodumeh shahri solutions with high determination coefficients, R2 and low SE Conclusion: The rheological characteristic of Qodumeh shahri gum is quite similar to commercial xanthan gum, therefore this gum might be applied as a commercial xanthan gum.
خالصى، ه.، علیزاده، م. و رضازادبارى، م. (1391). بررسى ویژگىهاى فیزیکوشیمیایى و عملکردى صمغ زدو تراوشى از گیاه Amygdalus scoparia Spach در منطقه میان جنگل، استان فارس. پژوهشهاى علوم و صنایع غذایى ایران، 8(3)، 317-326.
رضایى، ر.، خمیرى، م. و اعلمى، م. (1390) بررسى خواص رئولوژیکى و حسى ماست حاوى غلظتهاى مختلف صمغ عربى و صمغ گوار. پژوهش هاى علوم و صنایع غذایى ایران، جلد 7، شماره 1، ص 42-49.
سمائى، س پ.، قربانى، م.، صادقى ماهونک، ع. و جعفرى، س م. (1393). بررسى تاثیر سرعت چرخشى، غلظت و دما بر رفتار جریان محلول صمغ تن هى زردآلو. فصلنامه علوم و فناوری های نوین غذایی، سال دوم، شماره ٥، صفحه 57-65.
سماواتى، و.، امام جمعه، ز. و حجتى، م. (1391). بررسى مدلهاى مختلف رئولوژیک در سوسپانسیون هاى حاوى صمغ کتیرا. پژوهشهاى صنایع غذایى، 22(1)، 87-95.
صالحی، ف. و کاشانینژاد، م. (1392). بررسی اثرات روش و شرایط خشککردن بر روی رئولوژی و بافت صمغ دانه ریحان. فصلنامه علوم و فناوریهای نوین غذایی، سال اول، شماره ٢. صفحه 39-48.
عباسى، س. و رحیمى، س. (1384). بررسى تاثیر غلظت، دما، پ هاش و سرعت چرخشى روى رفتار جریان محلول صمغ کتیراى ایرانى. علوم و صنایع غذایى ایران، 2(4)، 29-42.
فروغى نیا، س. و عباسى، س. (1385). بررسى ویژگىهاى رئولوژیکى محلول ثعلب. مجموعه مقالات شانزدهمین کنگره ملى صنایع غذایى ایران، گرگان، 2-11.
Amin, G. H. (2005). Medicinal plants of Iran (1st ed.). (pp. 106) Tehran, Iran: Tehran University Publication.
Dickinson, E., 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17, 25–39.
García-Ochoa, F., Santos, V. E., Casas, J. A. & Gómeza, E. (2000). Xanthan gum:production, recovery, and properties. Biotechnology Advances, 18, 549-579.
Gómez–Díaz, D. & Navaza, M. J. (2003). Rheology of aqueous solutions of food.
Gujal, H. S., Sharma, A. & Singh, N. (2002). Effect of hydrocolloids, storage temperature and duration on the consistency of tomato ketchup. International Journal of Food Properties, 5, 179–191.
Harry-Okuru, R. E., Carriere, C. J. & Wing, R. E. (1999). Rheology of modified Lesquerella gum. J. Industrial Crops and Products., 19: 11-20.
Hydrocolloids, 23, 2062-2068.
Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K. & Farhoosh, R. (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food
Koocheki, A., Taherian, A. R., Razavi, S. M. A. & Bostan, A. (2009). Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Leidium perfoliatum seeds, Food Hydrocolloids, 23, 2369-2379.
Li, X., Fang, Y., AlAssaf, S., Phillips, G O., Nishinari, F. & Zhang, H. (2009). Rheological study of gum Arabic solution: Interpretation based on molecular self-association. Journal Food Hydrocolloids, 23, 2394-2402.
Mitschka, P. (1982). Simple conversion of brookfield R.V.T. readings into viscosity functions. J. Rheol. Acta., 21:
Naji, S., Razavi, S. M. A. & Karazhiyan, H. (2012). Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. J. Food Hydrocolloids., 28, 75-81.
Qian, H. F., Cui, S. W., Wang, Q., Wang, C. & Zhou, H. M. (2011). Fractionation and physicochemical characterization of peach gum polysaccharides. J. Food Hydrocolloids, 25,1285-1290.
Rao, M. A. & Keney, J. F. (1975). Flow properties of selected food gums. Canadian Institute of Food Science and Technology Journal, 8, 142-148.
Renard, A. C. (1996). Ultra-fresh yoghurt or dessert. Reveu Laitiere Francaise, 555, 12–14.
Rolled, B., 1995: Stabilizers for dairy desserts: Some interesting interactions. Revue-Laitiere- Francaise, 555: 22–23.
Song, K. W., Kim, Y. S. & Chang, G. S. (2006). Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fiber. Polym., 7(2), 129-138.
Steffe, J. F. (1996). Rheological Methods in Food Process Engineering. 2nd ed. Michigan: Freeman Press.
Sworn, G. (2000). Xanthan Gum. In: G.O. Phillips, & P. A. Williams (Eds.), Handbook of Hydrocolloids. (pp. 103-115). Cambridge: Wood head Publishing.
Tada, T., Matsumoto, T. & Masuda, T. (1998). Structure of molecular association of curdlan at dilute regime in alkaline aqueous systems. Chemical Physics, 228, 157–166.
Williams, P. A. & Phillips, G. O. (2000). Introduction to food hydrocolloids. In: G.O. Phillips, & P. A. Williams (Eds.), Handbook of Hydrocolloids. Cambridge: Wood head Publishing.