برآورد ارزش سایهای و هزینههای جانبی شوریآب زیرزمینی در بخش کشاورزی
محورهای موضوعی : اقتصاد محیط زیستفاطمه ابوالقاسمی 1 , حامد نجفی علمدارلو 2 , سیدابوالقاسم مرتضوی 3
1 - دانشآموخته کارشناسیارشد اقتصادکشاورزی، دانشگاه تربیتمدرس، تهران، ایران.
2 - دانشیار گروه اقتصادکشاورزی، دانشگاه تربیتمدرس، تهران، ایران. *(مسوول مکاتبات).
3 - دانشیار گروه اقتصادکشاورزی، دانشگاه تربیتمدرس، تهران، ایران.
کلید واژه: شوری آب زیرزمینی, هزینههای خارجی, تابع فاصله ستانده جهتدار,
چکیده مقاله :
زمینه و هدف: رشد بهرهبرداری از منابع آبی جهت تأمین مصارف کشاورزی منجر به برداشت بیرویه از آبخوانها و کاهش سطح آب زیرزمینی کشور شده است. این مسئله با انتشار پسابهای آلاینده در محیط زیست باعث افزایش شوری شده و قدرت تولیدی مزارع کشاورزی را با تهدید جدی روبرو ساخته است. از این رو اندازهگیری هزینههای آلودگی ناشی از تولید محصولات مختلف و تعیین ارزش سایهای آلایندهها بسیار حائز اهمیت است. برای این منظور در پژوهش حاضر با استفاده از آمارهای بخش کشاورزی در استانهای مختلف در دورة زمانی 1394-1379 به محاسبة ارزش سایهای شوری آب زیرزمینی ایران پرداخته شده است. روش بررسی: در این راستا ابتدا تابع فاصله ستانده جهتدار در فرم تبعی درجه دوم تصریح شد و با رویکرد برنامهریزی ریاضی برآورد شد. در ادامه میزان ناکارایی تکنیکی زیست محیطی استانها در فعالیت کشاورزی ارزیابی شده و نهایتا ارزش سایهای شوری آب زیرزمینی برآورد شد. یافته ها: نتایج نشان میدهد که استانهای کشور از لحاظ میزان ناکارایی تکنیکی شرایط متفاوتی دارند. متوسط ارزش تابع فاصله ستانده جهتدار ایران برابر با 228/0 میباشد. همچنین میانگین ارزش سایهای شوری آب زیرزمینی ایران برابر با 278/0 میلیارد ریال به ازای هر میکروزیمنس بر سانتی متر است. بحث و نتیجه گیری: پیشنهاد می شود که سیاست های دولت برای کنترل شوری آب زیرزمینی با توجه به ویژگی های هر منطقه تدوین و اجرا شود و اولویت با استان هایی باشد که قیمت سایه ای در آن ها کمتر است.
Background and Objective: The use of groundwater resources for agricultural purposes has led to an excessive withdrawal of aquifers and a reduction in groundwater levels in Iran. This issue has increased the salinity and has seriously threatened the agricultural production farms. Therefore, it is important to measure the cost of pollution caused by the production of different products and determine their shadow value. For this purpose, the shadow price of groundwater salinity in different provinces has been estimated during the period of 1964-1999. Method: In this study, directional output distance function in the quadratic form was used to determine the environmental efficiency and shadow price of groundwater salinity. Findings: The technical inefficiency and shadow value of salinity of the provinces was estimated in the agricultural activity. The results show that the provinces of the country have different conditions in terms of technical inefficiency. The average value of the directional output distance function of Iran is 0.228. Also, the average shadow value of salinity in the groundwater of Iran is 0.278 billion Rials per μS⁄cm. Discussion and Conclusion: It is suggested that policies should be developed to control the salinity of groundwater, taking into account the characteristics of each region, and priority should be given to provinces with less shadow prices.
- Zhou, P., Zhou, X., Fan, L. W., 2014. On estimating shadow prices of undesirable outputs with efficiency models: A literature review. Applied Energy, 130, 799-806.
- Griffin, R. C., Bromley, D. W., 1982. Agricultural runoff as a nonpoint externality: a theoretical development. American Journal of Agricultural Economics, 64(3), 547-552.
- Segerson, K., 1988. Uncertainty and incentives for nonpoint pollution control. Journal of environmental economics and management, 15(1), 87-98.
- Shortle, J. S., Dunn, J. W., 1986. The relative efficiency of agricultural source water pollution control policies. American Journal of Agricultural Economics, 68(3), 668-677.
- Iran Water Resources Management Company. 2017. Annual reports.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Salehi, S., Chizari, M., Sadighi, H., Bijani, M., 2018. Assessment of agricultural groundwater users in Iran: a cultural environmental bias. Hydrogeology Journal, 26(1), 285-295.
- Connor, J. D., Schwabe, K., King, D., Knapp, K., 2012. Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecological Economics, 77, 149-157.
- Mateo-Sagasta, J., Burke, J., 2012. Agriculture and water quality interactions: a global overview. SOLAW Background Thematic Report-TR08.
- Perman, R., Ma, Y., McGilvray, J., Common, M., 2003. Natural resource and environmental economics. Pearson Education.
- Färe, R., Grosskopf, S., Lovell, C. K., Yaisawarng, S., 1993. Derivation of shadow prices for undesirable outputs: a distance function approach. The review of economics and statistics, 374-380.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Hailu, A., Veeman, T. S., 2000. Environmentally sensitive productivity analysis of the Canadian pulp and paper industry, 1959-1994: an input distance function approach. Journal of environmental economics and management, 40(3), 251-274.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Moulaei, M., Sani, F., 2016. Estimating the shadow prices of pollutants in dairy farms of Sarab County using parametric output distance function. Animal Science Researches, 26(4), 167-178. (In Persian)
- Parsa, P., Sadeghi, Z., jalaee, S., 2016. Decomposition of Environmental Total Factor Productivity Growth Using Distance Function in the Provinces of Iran. Query journal of Applied Economic Studies in Iran, 4(16), 1-24. (In Persian)
- Alipour, A., Mosavi, S., Khalilian, S., 2014. Valuation of Carbon Dioxide Emissions Obtained from Agricultural Development in Iran. Agricultural Economics, 8(1), 63-81. (In Persian).
- Shahiki Tash, M., Rahimi, Gh., Khaje Hasani, M., 2014. Using mathematical programming method and Directional Distance Function in order to calculate environmental efficiency (study of basic metals production in Iran). Journal of Operational Research in Its Applications, 11(2), 125-138. (In Persian)
- Mousavi, M, H., Shakeri, A., 2014. Estimation of shadow prices for environmental pollutions CO2, NOx and SO2 in transportation sector. Journal of Transportation Research, 11(2), 135-144. (In Persian).
- Jafarnia, M., Esmaili, A., 2013. Computation shadow prices of environmental pollutants of beef cattle farms in Shiraz. Iranian Journal of Agricultural Economics and Development, 44(1), 17-25. (In Persian)
- Rezaei, A., Amadeh, H., Mohammadi, T., 2012. Analyzing the environmental efficiency and productivity in selected countries exporting and importing fossil energy sources: Directional Distance Function Approach. Iranian Energy Economics Research, 1(2), 93-126. (In Persian)
- Esmaeili, A., Mohsenpour, R. 2011. Measuring the Shadow Price of Pollutants in the Iranian Electric Industry. Queensland Journal of Educational Research, 10 (4), 69-86. (In Persian)
- Najafi Alamdarlo, H. 2018. The economic impact of agricultural pollutions in Iran, spatial distance function approach. Science of the Total Environment, 616, 1656-1663.
- Wang, K., Che, L., Ma, C., Wei, Y. M., 2017. The shadow price of CO2 emissions in China's iron and steel industry. Science of the Total Environment, 598, 272-281.
- Tang, K., Gong, C., Wang, D., 2016. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China. Science of the Total Environment, 541, 42-50.
- Molinos-Senante, M., Mocholí-Arce, M., Sala-Garrido, R., 2016. Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Science of the Total Environment, 568, 180-188.
- Rečka, L., Ščasný, M., 2015. Shadow prices of air pollutants in Czech industries: A convex nonparametric least squares approach (No. 8523). EcoMod.
- Dang, T. T., Mourougane, A., 2014. Estimating Shadow Prices of Pollution in Selected OECD Countries.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Pittman, R. W., 1981. Issue in pollution control: interplant cost differences and economies of scale. Land economics, 57(1), 1-17.
- Pittman, R. W., 1983. Multilateral productivity comparisons with undesirable outputs. The Economic Journal, 93(372), 883-891
- Wei, C., Löschel, A., Liu, B., 2015. Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: a non-parametric analysis. Energy Economics, 49, 33-43.
- Rečka, L., 2011. Shadow Price of Air Pollution Emissions in the Czech energy sector-Estimation from Distance Function.
- Du, L., Hanley, A., Wei, C., 2015. Marginal abatement costs of carbon dioxide emissions in China: a parametric analysis. Environmental and Resource Economics, 61(2), 191-216.
- Zhou, P., Zhou, X., Fan, L. W., 2014. On estimating shadow prices of undesirable outputs with efficiency models: A literature review. Applied Energy, 130, 799-806.
- Griffin, R. C., Bromley, D. W., 1982. Agricultural runoff as a nonpoint externality: a theoretical development. American Journal of Agricultural Economics, 64(3), 547-552.
- Segerson, K., 1988. Uncertainty and incentives for nonpoint pollution control. Journal of environmental economics and management, 15(1), 87-98.
- Shortle, J. S., Dunn, J. W., 1986. The relative efficiency of agricultural source water pollution control policies. American Journal of Agricultural Economics, 68(3), 668-677.
- Iran Water Resources Management Company. 2017. Annual reports.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Salehi, S., Chizari, M., Sadighi, H., Bijani, M., 2018. Assessment of agricultural groundwater users in Iran: a cultural environmental bias. Hydrogeology Journal, 26(1), 285-295.
- Connor, J. D., Schwabe, K., King, D., Knapp, K., 2012. Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecological Economics, 77, 149-157.
- Mateo-Sagasta, J., Burke, J., 2012. Agriculture and water quality interactions: a global overview. SOLAW Background Thematic Report-TR08.
- Perman, R., Ma, Y., McGilvray, J., Common, M., 2003. Natural resource and environmental economics. Pearson Education.
- Färe, R., Grosskopf, S., Lovell, C. K., Yaisawarng, S., 1993. Derivation of shadow prices for undesirable outputs: a distance function approach. The review of economics and statistics, 374-380.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Hailu, A., Veeman, T. S., 2000. Environmentally sensitive productivity analysis of the Canadian pulp and paper industry, 1959-1994: an input distance function approach. Journal of environmental economics and management, 40(3), 251-274.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Moulaei, M., Sani, F., 2016. Estimating the shadow prices of pollutants in dairy farms of Sarab County using parametric output distance function. Animal Science Researches, 26(4), 167-178. (In Persian)
- Parsa, P., Sadeghi, Z., jalaee, S., 2016. Decomposition of Environmental Total Factor Productivity Growth Using Distance Function in the Provinces of Iran. Query journal of Applied Economic Studies in Iran, 4(16), 1-24. (In Persian)
- Alipour, A., Mosavi, S., Khalilian, S., 2014. Valuation of Carbon Dioxide Emissions Obtained from Agricultural Development in Iran. Agricultural Economics, 8(1), 63-81. (In Persian).
- Shahiki Tash, M., Rahimi, Gh., Khaje Hasani, M., 2014. Using mathematical programming method and Directional Distance Function in order to calculate environmental efficiency (study of basic metals production in Iran). Journal of Operational Research in Its Applications, 11(2), 125-138. (In Persian)
- Mousavi, M, H., Shakeri, A., 2014. Estimation of shadow prices for environmental pollutions CO2, NOx and SO2 in transportation sector. Journal of Transportation Research, 11(2), 135-144. (In Persian).
- Jafarnia, M., Esmaili, A., 2013. Computation shadow prices of environmental pollutants of beef cattle farms in Shiraz. Iranian Journal of Agricultural Economics and Development, 44(1), 17-25. (In Persian)
- Rezaei, A., Amadeh, H., Mohammadi, T., 2012. Analyzing the environmental efficiency and productivity in selected countries exporting and importing fossil energy sources: Directional Distance Function Approach. Iranian Energy Economics Research, 1(2), 93-126. (In Persian)
- Esmaeili, A., Mohsenpour, R. 2011. Measuring the Shadow Price of Pollutants in the Iranian Electric Industry. Queensland Journal of Educational Research, 10 (4), 69-86. (In Persian)
- Najafi Alamdarlo, H. 2018. The economic impact of agricultural pollutions in Iran, spatial distance function approach. Science of the Total Environment, 616, 1656-1663.
- Wang, K., Che, L., Ma, C., Wei, Y. M., 2017. The shadow price of CO2 emissions in China's iron and steel industry. Science of the Total Environment, 598, 272-281.
- Tang, K., Gong, C., Wang, D., 2016. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China. Science of the Total Environment, 541, 42-50.
- Molinos-Senante, M., Mocholí-Arce, M., Sala-Garrido, R., 2016. Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Science of the Total Environment, 568, 180-188.
- Rečka, L., Ščasný, M., 2015. Shadow prices of air pollutants in Czech industries: A convex nonparametric least squares approach (No. 8523). EcoMod.
- Dang, T. T., Mourougane, A., 2014. Estimating Shadow Prices of Pollution in Selected OECD Countries.
- Färe, R., Grosskopf, S., Weber, W. L., 2006. Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89-103.
- Pittman, R. W., 1981. Issue in pollution control: interplant cost differences and economies of scale. Land economics, 57(1), 1-17.
- Pittman, R. W., 1983. Multilateral productivity comparisons with undesirable outputs. The Economic Journal, 93(372), 883-891
- Wei, C., Löschel, A., Liu, B., 2015. Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: a non-parametric analysis. Energy Economics, 49, 33-43.
- Rečka, L., 2011. Shadow Price of Air Pollution Emissions in the Czech energy sector-Estimation from Distance Function.
- Du, L., Hanley, A., Wei, C., 2015. Marginal abatement costs of carbon dioxide emissions in China: a parametric analysis. Environmental and Resource Economics, 61(2), 191-216.