پهنه بندی میزان خطرپذیری نواحی جنوبی استان خوزستان در شرایط تغییر اقلیم با تأکید بر زیرساختهای صنعتی
محورهای موضوعی :
آمایش سرزمین
آرش رحیمی
1
,
رضا برنا
2
,
جعفر مرشدی
3
,
جبرئیل قربانیان
4
1 - دانشجوی دکتری آب و هواشناسی، گروه جغرافیا، واحد اهواز، دانشگاه آزاد اسلامی اهواز، ایران.
2 - دانشیار گروه جغرافیا، واحد اهواز، دانشگاه آزاد اسلامی اهواز، ایران.*(مسوول مکاتبات)
3 - استادیار گروه جغرافیا، واحد اهواز، دانشگاه آزاد اسلامی اهواز، ایران.
4 - گروه جغرافیا، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
تاریخ دریافت : 1401/06/14
تاریخ پذیرش : 1401/09/02
تاریخ انتشار : 1401/11/01
کلید واژه:
تغییراقلیم,
خوزستان,
زیرساخت,
بارش,
دما,
چکیده مقاله :
زمینه و هدف: تغییر اقلیم را میتوان یکی از بزرگترین چالشهای محیطزیست دوران اخیر دانست که نشاندهنده تغییرات غیرمعمول در اقلیم درونی اتمسفر زمین و پیامدهای ناشی از آن در قسمتهای مختلف کره زمین است که تهدیدی جدی برای محیطزیست به شمار میرود. هدف از این پژوهش تهیه نقشه پهنهبندی آسیبپذیری زیرساختهای نواحی جنوبی خوزستان در شرایط تغییر اقلیم میباشد.
روش بررسی: بدین منظور با استفاده از منابع پیشین و مصاحبه با کارشناسان یازده متغیر مجموع بارش سالانه، میانگین دمای فصل گرم و سرد، روند بارشهای حدی بیش از 5 میلیمتر روزانه، تعداد کدهای گردوغبار، رخداد امواج گرم بالای صدک 95 م، تغییرات بارش، جا به جایی خط ساحلی، تغییرات آب زیرزمینی، سیلاب و آبگرفتگی و تغییرات دما در طی سال 1399 تا 1400مورد بررسی قرار گرفت. با استفاده از دو آزمون تحلیل روند یعنی آزمون تحلیل روند تخمینگر شیب سنس و آزمون تحلیل روند من-کندال روند سری زمانی 32 ساله این عناصر طی دوره آماری پایه (2017-1985)، بررسی شد.
یافته ها: نواحی جنوبی منطقه مورد مطالعه خوزستان دارای میانگین دمای معادل بیش از 38 درجه سانتیگراد در سال بوده است در حالی که بخشهای شمالی و مرکز منطقه مورد مطالعه دارای دمای بیشتر از 5/38 درجه سانتیگراد در سال بوده است. بخش جنوبی خوزستان دارای بارش سالانهای معادل بیش از 273 میلیمتر در سال بوده است در حالی که بخشهای جنوبی منطقه مورد مطالعه دارای بارش کمتر از 200 میلیمتر در سال و در برخی موارد حدود 156 میلیمتر در سال بوده است.
بحث و نتیجه گیری: نتایج نشان میدهد که پهنه مخاطرهآمیز زیاد و بسیار زیاد 80 درصد منطقه را در برگرفتهاند.
چکیده انگلیسی:
Background and Objective: climate change can be considered one of the biggest environmental challenges of the recent era, which indicates unusual changes in the internal climate of the earth's atmosphere and its consequences in different parts of the globe, which is a serious threat to the environment. The purpose of this research is to prepare a vulnerability zoning map of infrastructures in the southern regions of Khuzestan in the conditions of climate change.
Material and Methodology: for this purpose, using previous sources and interviews with experts, eleven variables of total annual precipitation, average temperature of hot and cold season, the trend of maximum precipitation of more than 5 mm per day, the number of dust codes, the occurrence of heat waves above the 95th percentile, precipitation changes, displacement of coastline, underground water changes, floods and inundation and temperature changes during 2019 to 2019 were investigated. By using two trend analysis tests, i.e. Sence slope estimator trend analysis test and Mann-Kendall trend analysis test, the trend of the 32-year time series of these elements during the basic statistical period (1985-2017) was investigated.
Findings: The southern parts of the studied region of Khuzestan had an average temperature of more than 38 degrees Celsius per year, while the northern and central parts of the studied region had a temperature of more than 38.5 degrees Celsius per year.The southern part of Khuzestan has an annual rainfall equivalent to more than 273 mm per year, while the southern parts of the studied area have less than 200 mm of rainfall per year and in some cases about 156 mm per year.
Discussion and Conclusion: The results show that high and very high risk areas cover 80% of the region.
منابع و مأخذ:
Yazdani, M., Seyedin, A. (2016). Assessment of spatial vulnerability of infrastructure in Ardabil from the perspective of passive defense. Journal of Applied Research in Geographical Sciences, 17: 199-179.
Bakhshi Shadmehri Zarqani, S.H., Kharazmi, A. A. (2016). Analysis of passive defense considerations in urban infrastructure with emphasis on water infrastructure. Journal of Geographical Research, 31: 120-104.
Salehnasab, A., Khalilabad Police Station, H., Continuator, Y. (2019). Identification and evaluation of threats in the infrastructure of threats in the critical infrastructure of cities with a passive defense approach (Case study: 6 Region 6 of Tehran). Journal of Urban Research and Planning, 9: 99-114. Doi: 1001.1.20086849.1400.12.4.3.5.
Trenberth Kevin, E., Philip, D. (2019). Jones Peter Ambenje, Roxana Bojariu, David asterling, Albert Klein Tank, David Parker, Fatemeh Rahimzadeh, James A. Renwick, Matilde Rusticucci, Brian Soden, Panmao Zhai. IPCCWGIbservations: Surface and Atmospheric Climate Change. 52: 308-312.
Abdi, P. (2005). Study of climate change in Ghezel Ozan watershed in Zanjan province and its impact on water resources in the region. Sepehr Magazine, 53: 38-47. (In persian)
Oliviera, J.V., Cohen, J.C.P., Pimente, M., Touringo, H.L.Z., Lobo, A., Sodre, G., Abdala, A. (2020). Urban climate and environmental perception about climate change in Belém, Pará, Brazil. Urban Climate, 31: 100579. 16 Pp. https://doi.org/10.1016/j.uclim.2019.100579.
Singh, A.S., Zwickle, A., Bruskotter, J.T., Wilson, R. (2019). The perceived psychological distance of climate change impacts and its influence on support for adaptation policy. Environmetnal of Science Policy, 73: 93–99. https://doi.org/10.1016/j.envsci.2017.04.011.
Motahar, A.A.A. (2018). The effects of climate change on Iran's environment and its challenges in advancing the pattern of progress. 7th Iranian Islamic Model of Progress Conference from the basic model to the Iranian Islamic model of progress, pp. 1-20.
Blanco, A.V.R. (2016). Local initiatives and adaptation to climate change. Disasters, 30(1):140-147. https://doi.org/10.1111/j.1467-9523.2006.00311.x
Manafeloeyan, C., Saeedeh Zarabadi, Z., Behzadfar, M. (2018). Assessing the factors affecting climate resilience (Case study: Tabriz). Journal of New Attitudes in Human Geography, 12: 526-509.
White, R., Boult, T., Chow, E. (2014). A computational asset vulnerability model for the strategic protection of the critical infrastructure, International Journal of Critical Infrastructure Protection, 7(3): 167-177.
Udie, J., Bhattacharyya, S., Ozawa-Meida, L. (2019). A Conceptual Framework for Vulnerability Assessment of Climate Change Impact on Critical Oil and Gas Infrastructure in the Niger Delta, Climate 6: 11-19. DOI:10.3390/cli6010011. www.mdpi. com/journal/climate.
Reder, A, Iturbide S., Herrera G., Rianna P. (2018). Mercogliano1,5 and J. M. Gutiérrez3 Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe the INTACT framework, Climatic Change https://doi.org/ 10.1007/s10584-018-2184-4.
Fakhruddin, B. S., Reinen-Hamill, R., Robertson, R. (2020). Extent and evaluation of vulnerability for disaster risk reduction of urban Nuku'alofa, Tonga. Progress in Disaster Science, 100017. https:// doi.org/ 10.1016/j.pdisas.2019.100017- 100027. https:// doi.org/ 10.1016/j.pdisas.2019.100017.
Soltani, S.R., Mousavi S., Zali, N. (2108). Risk analysis and assessment of regional infrastructure from the perspective of passive defense Case study: South Pars Industrial Zone. Journal of Regional Planning, 7: 83 -94.
Zarqani, S.H., Mofidi, A.S., Shafieinia, M. (2018). Climate change analysis and its consequences Case study: Sea level rise. The Second National Conference on Meteorology of Iran, Mashhad, Ferdowsi University of Mashhad. (In Persian)
Vice President of Planning and Economic Affairs of Khuzestan Industrial Towns, 2017.
Timmerman, P. (1981). Vulnerability, resilience and the collapse of society, Environmental Monograph.
Johansson, J., Hassel, H. (2010). An approach for modelling interdependent infrastructures in the context of vulnerability analysis. Reliability Engineering and System Safety, 95(12):1335-1344. https://doi.org/10.1016/j.ress.2010.06.010
Johansson, J., Henrik, H., Enrico, Z. (2013). Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems. Reliability Engineering and System Safety, 120: 27-38.
Lee, EE., Mitchell, J.E., Wallace, W.A. (2019). Restoration of Services in Interdependent Infrastructure Systems: A Network Flow Approach. IEEE Transaction on Systems Magazine, 37: 1303-1318.
Bahrami, Y. Marsousi, N. Absolute power, A. Ahmadi, K. (2014). The impact of climate on the sustainability of urban systems. International Conference on Sustainable Development, Strategies and Challenges focusing on Agriculture, Natural Resources, Environment and Tourism, Tabriz, Permanent Secretariat of the International Conference on Sustainable Development, Strategies and Challenges.
Jamali, S. (2014). Pathology of hydropower plants in the face of the effects of climate change; Case study: Karkheh catchment. Quarterly Journal of Iran Hydropower Dam and Power Plant. 1: 25-37. https://doi.org/1001.1.23225882.1393.1.2.3.5.(In Persian)
_||_
Yazdani, M., Seyedin, A. (2016). Assessment of spatial vulnerability of infrastructure in Ardabil from the perspective of passive defense. Journal of Applied Research in Geographical Sciences, 17: 199-179.
Bakhshi Shadmehri Zarqani, S.H., Kharazmi, A. A. (2016). Analysis of passive defense considerations in urban infrastructure with emphasis on water infrastructure. Journal of Geographical Research, 31: 120-104.
Salehnasab, A., Khalilabad Police Station, H., Continuator, Y. (2019). Identification and evaluation of threats in the infrastructure of threats in the critical infrastructure of cities with a passive defense approach (Case study: 6 Region 6 of Tehran). Journal of Urban Research and Planning, 9: 99-114. Doi: 1001.1.20086849.1400.12.4.3.5.
Trenberth Kevin, E., Philip, D. (2019). Jones Peter Ambenje, Roxana Bojariu, David asterling, Albert Klein Tank, David Parker, Fatemeh Rahimzadeh, James A. Renwick, Matilde Rusticucci, Brian Soden, Panmao Zhai. IPCCWGIbservations: Surface and Atmospheric Climate Change. 52: 308-312.
Abdi, P. (2005). Study of climate change in Ghezel Ozan watershed in Zanjan province and its impact on water resources in the region. Sepehr Magazine, 53: 38-47. (In persian)
Oliviera, J.V., Cohen, J.C.P., Pimente, M., Touringo, H.L.Z., Lobo, A., Sodre, G., Abdala, A. (2020). Urban climate and environmental perception about climate change in Belém, Pará, Brazil. Urban Climate, 31: 100579. 16 Pp. https://doi.org/10.1016/j.uclim.2019.100579.
Singh, A.S., Zwickle, A., Bruskotter, J.T., Wilson, R. (2019). The perceived psychological distance of climate change impacts and its influence on support for adaptation policy. Environmetnal of Science Policy, 73: 93–99. https://doi.org/10.1016/j.envsci.2017.04.011.
Motahar, A.A.A. (2018). The effects of climate change on Iran's environment and its challenges in advancing the pattern of progress. 7th Iranian Islamic Model of Progress Conference from the basic model to the Iranian Islamic model of progress, pp. 1-20.
Blanco, A.V.R. (2016). Local initiatives and adaptation to climate change. Disasters, 30(1):140-147. https://doi.org/10.1111/j.1467-9523.2006.00311.x
Manafeloeyan, C., Saeedeh Zarabadi, Z., Behzadfar, M. (2018). Assessing the factors affecting climate resilience (Case study: Tabriz). Journal of New Attitudes in Human Geography, 12: 526-509.
White, R., Boult, T., Chow, E. (2014). A computational asset vulnerability model for the strategic protection of the critical infrastructure, International Journal of Critical Infrastructure Protection, 7(3): 167-177.
Udie, J., Bhattacharyya, S., Ozawa-Meida, L. (2019). A Conceptual Framework for Vulnerability Assessment of Climate Change Impact on Critical Oil and Gas Infrastructure in the Niger Delta, Climate 6: 11-19. DOI:10.3390/cli6010011. www.mdpi. com/journal/climate.
Reder, A, Iturbide S., Herrera G., Rianna P. (2018). Mercogliano1,5 and J. M. Gutiérrez3 Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe the INTACT framework, Climatic Change https://doi.org/ 10.1007/s10584-018-2184-4.
Fakhruddin, B. S., Reinen-Hamill, R., Robertson, R. (2020). Extent and evaluation of vulnerability for disaster risk reduction of urban Nuku'alofa, Tonga. Progress in Disaster Science, 100017. https:// doi.org/ 10.1016/j.pdisas.2019.100017- 100027. https:// doi.org/ 10.1016/j.pdisas.2019.100017.
Soltani, S.R., Mousavi S., Zali, N. (2108). Risk analysis and assessment of regional infrastructure from the perspective of passive defense Case study: South Pars Industrial Zone. Journal of Regional Planning, 7: 83 -94.
Zarqani, S.H., Mofidi, A.S., Shafieinia, M. (2018). Climate change analysis and its consequences Case study: Sea level rise. The Second National Conference on Meteorology of Iran, Mashhad, Ferdowsi University of Mashhad. (In Persian)
Vice President of Planning and Economic Affairs of Khuzestan Industrial Towns, 2017.
Timmerman, P. (1981). Vulnerability, resilience and the collapse of society, Environmental Monograph.
Johansson, J., Hassel, H. (2010). An approach for modelling interdependent infrastructures in the context of vulnerability analysis. Reliability Engineering and System Safety, 95(12):1335-1344. https://doi.org/10.1016/j.ress.2010.06.010
Johansson, J., Henrik, H., Enrico, Z. (2013). Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems. Reliability Engineering and System Safety, 120: 27-38.
Lee, EE., Mitchell, J.E., Wallace, W.A. (2019). Restoration of Services in Interdependent Infrastructure Systems: A Network Flow Approach. IEEE Transaction on Systems Magazine, 37: 1303-1318.
Bahrami, Y. Marsousi, N. Absolute power, A. Ahmadi, K. (2014). The impact of climate on the sustainability of urban systems. International Conference on Sustainable Development, Strategies and Challenges focusing on Agriculture, Natural Resources, Environment and Tourism, Tabriz, Permanent Secretariat of the International Conference on Sustainable Development, Strategies and Challenges.
Jamali, S. (2014). Pathology of hydropower plants in the face of the effects of climate change; Case study: Karkheh catchment. Quarterly Journal of Iran Hydropower Dam and Power Plant. 1: 25-37. https://doi.org/1001.1.23225882.1393.1.2.3.5.(In Persian)