تحلیل عوامل تاثیرگذار در استفاده از نماهای هوشمند برای پایداری در شهر تبریز
محورهای موضوعی : انرژی های تجدید پذیرسیدمهدی قدوسی فر 1 , مهسا فرامرزی اصل 2
1 - دانشجوی دکترای پژوهش محور معماری، واحد تبریز، آزاد اسلامی، تبریز، ایران
2 - استادیار گروه معماری، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
کلید واژه: نمای ساختمان, نمای متحرک هوشمند, پایداری, شهر تبریز.,
چکیده مقاله :
زمینه و هدف: در دهههای اخیر، ابداع راهکارهای نوآورانه در جهت دستیابی به پایداری در محیط ساختمان بسیار مورد توجه قرار گرفته است. نماها برای مصرف انرژی و آسایش در داخل ساختمانها بسیار حیاتی هستند. گنجاندن هوش در طراحی آنها روشی موثر برای دستیابی به ساختمانهای با مصرف کم انرژی است. توانایی سیستمهای دارای نمای ویژه برای کار مطمئن و موثر یکی از چالشها به سمت پایداری به شمار میرود. هدف تحقیق حاضر تحلیل عوامل تاثیرگذار در استفاده از نماهای هوشمند برای پایداری در شهر تبریز می باشد.
روش بررسی: تحقیق حاضر توصیفی-تحلیلی و از نظر هدف کاربردی می باشد. در مطالعات میدانی از پرسشنامه محقق ساخته استفاده شد. جامعه آماری تحیق ساکنان شهر تبریز که حجم نمونه براساس فرمول کوکران 384 نفر بدست آمد. برای تحلیل داده ها از معادلات ساختاری به روش تحلیل عاملی مرتبه دوم با نرم افزار Spss و Amos استفاده شد.
یافتهها: نتایج نشان داد بیشترین تأثیرات مربوط به عوامل کاهش مصرف انرژی با بار عاملی 92/0 بوده و کمترینش مربوط به عامل مقرون بصرفه بودن با بار عاملی 65/0 بوده است.
بحث و نتیجه گیری: نماهای هوشمند ساختمانی در تمامی ساختمان ها کاربرد دارد. این ساختمان ها میتوانند در انواع کاربری ها مورد استفاده قرار گیرند. افزایش جذابیت ظاهری، عملکرد بهتر در برابر شرایط اقلیمی، کاهش مصرف انرژی و کمک به محیط زیست از مهمترین دلایلی است که معماران به سمت طراحی و اجرای این سیستمها روی آورده اند.
Background and Aim: In recent decades, inventing innovative solutions to achieve sustainability in the building environment has received much attention. Facades are very vital for energy consumption and comfort inside buildings. Incorporating intelligence into their design is an effective way to achieve buildings with low energy consumption. The ability of systems with a special view to work reliably and effectively is one of the challenges towards sustainability. The purpose of this research is to analyze the factors influencing the use of smart facades for sustainability in Tabriz city.
Methods: The current research is descriptive-analytical and practical in terms of purpose. A researcher-made questionnaire was used in the field studies. The statistical population of Tabriz city residents was studied, and the sample size was 384 people based on Cochran's formula. For data analysis, structural equations were used using second-order factor analysis with Spss and Amos software.
Results: The findings showed that the greatest effects were related to the factors of reducing energy consumption with a factor loading of 0.92, and the lowest was related to the factor of being cost-effective with a factor loading of 0.65.
Discussion and Conclusion: Smart building facades are used in all buildings. These buildings can be used in various uses. Increasing visual appeal, better performance against climatic conditions, reducing energy consumption and helping the environment are some of the most important reasons why architects have turned to the design and implementation of these systems.
1. Aksamija, A. 2016. Design Methods for Sustainable, High-Performance Building Facades. Advances in Building Energy Research 10 (2): 240–262. doi:10.1080/17512549.2015.1083885.
2. Arjamandania A., 2016, using smart materials and facades with a sustainable approach (case example: Shahrekord city, Chaharmahal and Bakhtiari province), bimonthly research in art and humanities, 1(1), 1-10. [In Persian]
3. Golasemi Z., Golabchi, M., 2017, Application of theory on the design factor of smart shells, Green Architecture, 3(12), 1-10.
4. Shan, R. 2016. Climate Responsive Facade Optimization Strategy. PhD thesis, University of Michigan, Ann Arbor, MI.
5. Sorensen, L. 2013. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device.” Sustainability 5 (8): 3601-3614.
6. Grobman, Y., Capeluto, I, & Austern, G. 2017. External Shading in Buildings: Comparative Analysis of Day Lighting Performance in Static and Kinetic Operation Scenarios. Architectural science review 60 (2): 126–136. doi:10.1080/ 00038628.2016.1266991.
7. Ahmed, M., A. Abdel-Rahman, M. Bady, E. Mahrous, and M. Suzuki. 2016. Optimum Energy Consumption by using Kinetic Shading System for Residential Buildings in hot Arid Areas. International Journal of Smart Grid and Clean Energy 5 (2): 2-16.
8. Choi, S., D. Lee, and J. Jo. 2017. Methods of Deriving Shaded Function According to Shading Movements of Kinetic Facades. Sustainability, 9: 1449.
9. Loonen, R. C. G. M., F. Favoino, J. L. M. Hensen, and M. Overend. 2017. Review of Current Status, Requirements and Opportunities for Building Performance Simulation of Adaptive Facades.” Journal of Building Performance Simulation 10 (2): 205-223
10. Al-Masrani, Salwa M., Karam M. Al-obaidi, Azizah Zalin, M. Isma, I. 2018. Design Optimization of Solar Shading Systems for Tropical Office Buildings: Challenges and Future Trends. Solar Energy 170: 849-872.
11. Veliko, K., & G. Thun. 2013. Responsive Building Envelopes: Characteristics and Evolving Paradigms in Design and Construction of High Performance Homes. London: Routledge Press.
12. Romano, R., L. Aelenei, D. Aelenei, and E. S. Mazzucchelli. (2018). “What is an Adaptive Facade? Analysis of Recent Terms and Definitions from an International Perspective.” Journal of Facade Design and Engineering 6 (3): 65-76.
13. Smith, G., and G. W. Smith. 2015. Swing low, Sweet Chariot: Kinetic Sculpture and the Crisis of Western Technocentrism. Arts 4 (3): 75-92. doi:10.3390/arts4030075.
14. Ochoa, C. Capeluto, I, 2008, Intelligent Facades in Hot Climates: Energy and Comfort Strategies for Successful Application, PLEA 2008 - 25th Conference on Passive and Low Energy Architecture, Dublin, 22nd to 24th
October 2008, 25.
15. Ochoa, C, Capeluto, I, 2011, Strategic decision-making for intelligent buildings: Comparative impact of passive design strategies and active features in a hot climate Building and Environment, 4 (46), 922-937
16. Moloney, J, 2006, Between Art and Architecture: The Interactive Skin, Information Visualization., 1 (5). 681-686
17. Tzempelikos, A; Athienitis, A. K; Karava, P, 2007. Simulation of façade and envelope design options for a new institutional building, 81(9), 1088-1103. doi:10.1016/j.solener.2007.02.006.
18. Aschehoug, Ø, Andresen. I, Kleiven, T, Wyckmans, A, 2005, Intelligent Building Envelopes-Fad or Future? Proceeding of the 7th Symposium on Building Physics in the Nordic Countries. (1). (2005).
19. Velikov, K, Thun, G, 2012, Responsive Building Envelopes: Characteristics and Evolving Paradigms. Design and Construction of High-Performance Homes: Building Envelopes, Renewable Energies and Integrated Practice, 75-93
20. S. Selkowitz, E. Lee, O. Aschehoug, 2003, Perspectives on Advanced Facades with Dynamic Glazings and Integrated Lighting Controls, Innovation in Building Envelopes and Environmental Systems International Conferences on Solar Energy in Buildings., 2 (79).
21. Sacht, H, Bragança, L, Almeida, M, 2011, Façade Modules for Eco-Efficient Refurbishment of Buildings: Glazing Thermal Performance to Guimarães Climate International Conference Sustainability of Constructions - Towards a better built environment. 423-430
22. Wigginton, J. Harris, 2011, Intelligent Skins. Linacre House, Jordan Hill, Oxford, UK, 171
23. GhaffarianHoseini, A, Berardi, U, GhaffarianHoseini, A, Makaremi, N, 2012, Intelligent Facades in Low-Energy Buildings, British Journal of Environment and Climate Change., 2 (4), 437-464
24. [Skelly, M, 2000, Essay competition: The individual and the intelligent façade, Building Researh and Information, 1 (28). 67-69.
25. Kensek, K, Hansanuwat, R, 2011, Environment Control Systems for Sustainable Design: A Methodology for Testing, Simulating and Comparing Kinetic Facade Systems, Journal of Creative Sustainable Architecture & Built Environment (1) (2011), 27-45.
26. TEmotion Intelligent façade concept. [Online]. Available: http://www.wicona-int.com/en/Product/Facade/TEmotion-Intelligent-facade-concept/.
27. Dan, W, Aye, L, Mendis, P, Ngo, T, 2012. Technical feasibility of façade integrated solar cooling system for commercial buildings, Australian solar energy society. 50.
28. Wicona Temotion, most innovative facade system at the fair BAU 2011. [Online]. Available: http://www.interempresas.net/Doors-Windows/Articles/48454-Wicona-Temotion-most-innovative-acade-system-at-the-fair-BAU-2011.html.
29. Knippers, J, Scheible, F, Oppe, M, Jungjohann, H, 2012, Kinetic Media Facade Consisting of GFRP Louvers 6th International Conference on FRP Composites in Civil Engineering.
30. Khayami S, Daneshjoo K. 2022, The Effect of Dynamic Double Skin Façade on Energy Efficiency in Khayyam Administrative Building. Naqshejahan; 12 (2) :110-137
31. Omidvari, S., & Omidvari, E. 2022. The Role of Two-Shell Facades in Enhancing the Visual Privacy of Residential Complexes in Tehran (An Analysis of the Mashrabiya Elements in the Old Architecture). The Monthly Scientific Journal of Bagh-e Nazar, 19(114), 5-16. doi: 10.22034/bagh.2022.274819.4814.
32. Siadati, F. S., Fayaz, R., & Nikghadam, N. 2021. Optimization of thermal performance of double skin façade box window type with natural ventilation in summer in Tehran. Journal of Architecture in Hot and Dry Climate, 9(13), 155-175.
33. Zeynali Azim, A., & Babazadeh Oskouei, S. 2022. Analyzing of Creating a Livable Smart City in the City of Tabriz. Urban Economics and Planning, 3(4), 24-37.
34. Jodeiri Abbasi, M., shaghaghi, S., Salek Zamankhani, J., & Hamidzadeh Khyavi, S. 2021. Assessing the Impact of Climate on the Planning and Design of Contemporary Housing in Tabriz City (Case Study of Zafaranieh, Valiasr and Rushdieh neighborhoods). Territory, 18(71), 45-66.
