ارزیابی عملکرد محیطزیستی دستگاه کمپوستر استارکلین در تبدیل پسماندهای تر به کود کمپوست
محورهای موضوعی :
مدیریت پسماند
حمید عباسعلیزاده
1
,
ارژنگ فتحی گردلیدانی
2
,
شهاب خلج
3
,
سیاوش جلیلی آرامش
4
1 - مدیرعامل شرکت ستاره آریا نوین آیلین.
2 - فارغ التحصیل دکتری علوم خاک، دانشگاه تهران. *(مسوول مکاتبات).
3 - فارغ التحصیل کارشناسی ارشد هوش مصنوعی، دانشگاه آزاد اسلامی واحد صفا دشت تهران.
4 - فارغ التحصیل کارشناسی مهندسی صنایع، دانشگاه صنعتی بوئین زهرا.
تاریخ دریافت : 1402/02/25
تاریخ پذیرش : 1402/03/31
تاریخ انتشار : 1402/04/01
کلید واژه:
پسماند تر,
دستگاه کمپوستر,
استارکلین,
کمپوست,
تفکیک از مبدا,
چکیده مقاله :
زمینه و هدف: مدیریت مطلوب مواد زاید آلی شهری، کشاورزی و صنعتی با توجه به حجم بالای تولید روزانه آنها در تمامی کشورها از اهمیت ویژهای به خصوص از دیدگاه محیطزیستی و بهداشتی برخوردار است. هدف از این پژوهش ارزیابی عملکرد محیطزیستی دستگاه کمپوستر استارکلین در تبدیل پسماندهای تر از مبدأ به کود کمپوست و تجزیه شیمیایی و میکروبی کود تولید شده و مقایسه آن با استانداردهای مرجع در این زمینه بود. روش بررسی: یک دستگاه کمپوستر با ظرفیت تبدیل 10-5 کیلوگرم پسماند تر در شهرداری منطقه 22 تهران نصب گردید و سپس باکتری Alicyclobacillus sendaiensis به مخزن دستگاه اضافه شد و روزانه پسماندهای تر درون آن ریخته میشد و بعد از 24 ساعت کمپوست برداشت میگردید. سپس کمپوست برداشت شده از نظر ویژگیهای شیمیایی و میکروبی مورد آزمایش قرار گرفت. یافتهها: نتایج نشان داد که غلظت فلزات سنگین و تعداد باکتریهای سالمونلا و کلیفرمهای مدفوعی در کمپوست خروجی دستگاه کمتر از حد مجاز بود و با استانداردهای مرجع کاملا مطابقت دارد. سایر ویژگیهای شیمیایی کمپوست نیز مطلوب بود که نشان دهنده تولید کود آلی با کیفیتی است و استفاده از آن میتواند سبب بهبود حاصلخیزی خاکها شود. بحث و نتیجهگیری: دستگاه کمپوستر مورد مطالعه به خوبی و در زمان کوتاه بدون تولید شیرابه و بوی نامطبوع و نیز بدون هیچگونه آلودگی محیطزیستی پسماندهای تر را به کود تبدیل کرد و از یک سو سبب تفکیک کامل پسماند تر و خشک در مبدأ و از سوی دیگر سبب تولید یک کود کمپوست با کیفیت گردید. بنابراین استفاده از آن در مکانهای تولید پسماند تر توصیه میگردد.
چکیده انگلیسی:
Background and Objective: Ideal management of urban, agricultural, and industrial organic wastes is important due to high daily production of them, particularly from environmental and hygienic perspective. The aim of this research was to evaluate the environmental performance of StarClean composting machine in converting wet wastes at origin to compost fertilizer and chemical and microbial analysis of the produced fertilizer and comparing it with reference national standards.Material and Methodology: One composting machine with a capacity to convert 5-10 kg wet wastes was installed in region 22 of Tehran municipality, then Alicyclobacillus sendaiensis bacteria were added to the machine tank and wet wastes were strewed in it daily and after 24 hours, the produced compost was picked up. Afterwards, microbial and chemical characteristics of the compost were analyzed.Findings: Results showed that heavy metals concentration and Salmonella and Coliform fecal bacteria counts of the machine output compost were lower than permissible limits and completely passed the reference standards. Other chemical properties also were ideal which indicates the produced compost is a high quality organic fertilizer and its use can improve soil fertility.Discussion and Conclusion: the studied composting machine converts wet wastes to compost fertilizer with high quality in a short time without the production of leachate and an unpleasant odor. It also allows to complete separation of wet and dry wastes at source and production of compost fertilizer with high quality. Hence it is suggested to use this composting machine in places of wet waste generation.
منابع و مأخذ:
Naqvi R, and Fadzi-Diri A. (2007). Review of dry waste management in Tehran, the third waste management conference. Tehran, Organization of Municipalities and Villages of the country, Environmental Protection Organization. (In Persian)
Tchobanoglous G, and Kreith F. (2002). Handbook of Solid Waste Management McGraw-Hil, New York.
Mohammadi MJ, Zarei A, and Fallah H. (2007). The need to review the production of compost from mixed waste and the development of biocompost, the fifth national waste management conference. Mashhad, Organization of Municipalities and Villages of the country. (In Persian)
Karimian A, Nadaf Fard L, Nowrozi M, Bagheripour Monfared I, and Mohseni SSA. (2022). Comparison of physical, chemical and microbial properties of urban waste compost with biocompost obtained from wastes of green spaces and vegetable fields in Tehran metropolis. Environmental Science Studies, 7(2), 4844-4855. (In Persian)
Tataro A, and Asefi A. (1997). The effects of municipal compost output from Tehran on tomato, cauliflower and potato cropping and the effect of that’s reminder on wheat and barley cropping (Final report), Recycle Organization press.
Hemati A, Nobaharan K, Amirifar A, Moghiseh E, and Asgari Lajayer B. (2022). Municipal waste management: current research and future challenges. Sustainable Management and Utilization of Sewage Sludge, 335-351.
Hussein L, Uren C, Rekik F, and Hammami Z. (2022). A review on waste management and compost production in the Middle East–North Africa region. Waste Management & Research, 40(8), 1110-1128.
Shabanzadeh E, and Moradi D. (2014). Separation of wet and dry waste and compaction of waste at the source, the first electronic conference on new findings in the environment and agricultural ecosystems, in electronic form, New Energy and Environment Research Institute, University of Tehran. (In Persian)
Hemmi H, Shimoyama T, Nakayama T, Hoshi K, and Nishino T. (2004). Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic condition, Journal of bioscience and bioengineering, 97: 119-126.
Nishino TOKUZO, Nakayama TORU, Hemmi HISASHI, Shimoyama TAKEFUMI, Yamashita SATOSHI, Akai MINORU, and Hoshi KATSUJI. (2003). Acidulocomposting, an accelerated composting process of garbage under thermoacidophilic conditions for prolonged periods, Journal of Environmental Biotechnology, 3: 33-36.
Tianli Y, Jiangbo Z, and Yahong Y. (2014). Spoilage by Alicyclobacillus bacteria in juice and beverage products: chemical, physical, and combined control methods. Comprehensive Reviews in Food Science and Food Safety, 13(5): 771-797.
Salvato JA, Nemerow NL, and Agardy FJ. (2003). Environmental engineering, New York, John Wiley & Sons.
Techobanoglous G, Theisen L, and Vigil SA. (1993). Integrated solid waste: Engineering Principles and Management Issues. New York, McGraw Hi11.
National Standard of Iran No. 10716. (2008). Compost - physical and chemical characteristics. (In Persian)
Iran National Standard No. 1 – 13321. (2011). Compost - Microbial characteristics, first part. (In Persian)
Amuah, EEY, Fei-Baffoe B, Sackey LNA, Douti NB, and Kazapoe, RW. (2022). A review of the principles of composting: understanding the processes, methods, merits, and demerits. Organic Agriculture, 12(4), 547-562.
_||_
Naqvi R, and Fadzi-Diri A. (2007). Review of dry waste management in Tehran, the third waste management conference. Tehran, Organization of Municipalities and Villages of the country, Environmental Protection Organization. (In Persian)
Tchobanoglous G, and Kreith F. (2002). Handbook of Solid Waste Management McGraw-Hil, New York.
Mohammadi MJ, Zarei A, and Fallah H. (2007). The need to review the production of compost from mixed waste and the development of biocompost, the fifth national waste management conference. Mashhad, Organization of Municipalities and Villages of the country. (In Persian)
Karimian A, Nadaf Fard L, Nowrozi M, Bagheripour Monfared I, and Mohseni SSA. (2022). Comparison of physical, chemical and microbial properties of urban waste compost with biocompost obtained from wastes of green spaces and vegetable fields in Tehran metropolis. Environmental Science Studies, 7(2), 4844-4855. (In Persian)
Tataro A, and Asefi A. (1997). The effects of municipal compost output from Tehran on tomato, cauliflower and potato cropping and the effect of that’s reminder on wheat and barley cropping (Final report), Recycle Organization press.
Hemati A, Nobaharan K, Amirifar A, Moghiseh E, and Asgari Lajayer B. (2022). Municipal waste management: current research and future challenges. Sustainable Management and Utilization of Sewage Sludge, 335-351.
Hussein L, Uren C, Rekik F, and Hammami Z. (2022). A review on waste management and compost production in the Middle East–North Africa region. Waste Management & Research, 40(8), 1110-1128.
Shabanzadeh E, and Moradi D. (2014). Separation of wet and dry waste and compaction of waste at the source, the first electronic conference on new findings in the environment and agricultural ecosystems, in electronic form, New Energy and Environment Research Institute, University of Tehran. (In Persian)
Hemmi H, Shimoyama T, Nakayama T, Hoshi K, and Nishino T. (2004). Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic condition, Journal of bioscience and bioengineering, 97: 119-126.
Nishino TOKUZO, Nakayama TORU, Hemmi HISASHI, Shimoyama TAKEFUMI, Yamashita SATOSHI, Akai MINORU, and Hoshi KATSUJI. (2003). Acidulocomposting, an accelerated composting process of garbage under thermoacidophilic conditions for prolonged periods, Journal of Environmental Biotechnology, 3: 33-36.
Tianli Y, Jiangbo Z, and Yahong Y. (2014). Spoilage by Alicyclobacillus bacteria in juice and beverage products: chemical, physical, and combined control methods. Comprehensive Reviews in Food Science and Food Safety, 13(5): 771-797.
Salvato JA, Nemerow NL, and Agardy FJ. (2003). Environmental engineering, New York, John Wiley & Sons.
Techobanoglous G, Theisen L, and Vigil SA. (1993). Integrated solid waste: Engineering Principles and Management Issues. New York, McGraw Hi11.
National Standard of Iran No. 10716. (2008). Compost - physical and chemical characteristics. (In Persian)
Iran National Standard No. 1 – 13321. (2011). Compost - Microbial characteristics, first part. (In Persian)
Amuah, EEY, Fei-Baffoe B, Sackey LNA, Douti NB, and Kazapoe, RW. (2022). A review of the principles of composting: understanding the processes, methods, merits, and demerits. Organic Agriculture, 12(4), 547-562.