A New Version of the Edge Geometric-Arithmetic Index
محورهای موضوعی : مجله بین المللی ریاضیات صنعتی
1 - Department of Mathematics, Sousangerd Branch, Islamic Azad University, Sousangerd, Iran
کلید واژه: Geometric – arithmetic index, Molecular graph, Line graph, Octane isomers, Nanotorus,
چکیده مقاله :
we consider the second of the edge version of geometric arithmetic index of graphs belonging to the class of geometric- arithmetic indices. Its related to the new versions of vertex Szeged index and PI index of line graphs. The main properties of are considered, such as upper and lower bounds. We compare the second version of the edge geometricarithmetic indices for some graphs, TUC4C6C8 [p,q]nanotorus and molecular octane isomers.
در این مقاله ، دومین نسخه شاخص هندسی - حسابی یالی گراف ها متعلق به کلاس شاخص های هندسی - حسابی را در نظر می گیریم. این تقریباً مربوط به نسخه های جدید شاخص های سگد و PIرأسی از گراف خط است. خواص اصلی مانند کران های بالا و پایین مورد بررسی قرار گرفته است. ما نوع دوم شاخص هندسی-حساب یالی را برای برخی گراف ها، چنبره TUC4C6C8 [p,q] و ایزومرهای مولکول اکتان محاسبه و مقایسه می کنیم.
[1] Gh. Fath-Tabar, B. Furtula, I. Gutman, A new geometric-arithmetic index, J. Math. Chem. 47 (2010) 477-486.
[2] A. Iranmanesh, A. R. Ashrafi, Balaban Index of an Armchair Polyhex, T UC4C8(R) and T UC4C8(S) Nanotorus, J. Comput. Theor. Nanosci. 4 (2007) 514-517.
[3] A. Iranmanesh, O. Khormali, Szeged index of HAC5C7[r, s] nanotubes, J. Comput. Theor. Nanosci. 6 (2009) 1670-1679.
[4] A. Iranmanesh, O. Khormali, PI index of HAC5C7[p, q] nanotube, J. Comput. Theor.Nanosci. 5 (2008) 131-139.
[5] A. Iranmanesh, M. Zeraatkar, Ga index for some nanotubes, Optoelectron. Adv. Mater.- Rapid Commun 4 (2010) 1852-1855.
[6] K. C. Das, N. Trinajstic, Comparison between Geometric-arithmetic Indices, Croat. Chem. Acta. 85 (2012) 353-357.
[7] A. Mahimiani, O. Khormali, On the edge and total GA indices of some graphs, Int. J. Industrial Mathematics 5 (2013) 259-263.
[8] A. Mahimiani, O. Khormali, A. Iranmanesh, On the edge version of geometric-arithmetic index, Digest Journal of Nanomaterials and Biostructures 7 (2012) 411-414.
[9] M. Saki, Comparison between Two Geometric-Arithmetic Indices, J. Comput. Theore. Nanoscience 14 (2017) 3393-3398.
[10] M. Saki, A. Iranmanesh, O. Khormali, Edge geometric-arithmetic index of some graphs, Studia U.B.B. Chem. 3 (2014) 83-90.
[11] M. Saki, A. Iranmanesh, A. Tehranian, Computing the edge geometric-arithmeticindex of V-phenylenic nanotube, J. Comput. Theore. Nanoscience 12 (2015) 2552-2555.
[12] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Weinheim, WileyVCH, (2000).
[13] D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2010) 1369-1376.
[14] Y. Yuan, B. Zhou, N. Trinajsti, On geometric-arthimetic index, J. Math. Chem. 47 (2010) 833-841.
[15] C. Q. Zhao, Nature of Protein Dynamics and Thermodynamics, Rev. Theor. Sci. 1 (2013) 83-101.
[16] B. Zhou, I. Gutman, B. Furtula, Z. Du, On two types of geometric-arithmetic index, Chem. Phys. Lett. 482 (2009) 153-155.