Construction of Pseudospectral Meshless Radial Point Interpolation for Sobolev Equation with Error Analysis
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیS. Abbasbandy 1 , E. Shivanian 2
1 - Department of Applied Mathematics, Imam Khomeini International University, Qazvin, Iran.
2 - Department of Applied Mathematics, Imam Khomeini International University, Qazvin, Iran.
کلید واژه: meshless technique, Pseudospectral method, Sobolev equation, Radial point interpolation (RPI), Radial basis function,
چکیده مقاله :
In this study, we develop an approximate formulation for two-dimensional (2D) Sobolev equations based on pseudospectral meshless radial point interpolation (PSMRPI). The Sobolev equations which are arisen in the fluid flow penetrating rocks, soils, or different viscous media do not have an exact solution except in some special cases. The problem can be rigorously solved particularly when the geometry of the domain is more complex. In the PSMRPI method, the nodal points do not need to be regularly distributed and can even be quite arbitrary. It is easy to have high order derivatives of unknowns in terms of the values at nodal points by constructing operational matrices. It is proved that the method is convergent and unconditionally stable in some sense with respect to the time. The main results of the Sobolev equation are demonstrated by some examples to show the validity and trustworthiness of the PSMRPI technique.
در این مطالعه، یک روش تقریبی برای معادلات دو بعدی (2D) Sobolev بر اساس درون یابی نقطه شعاعی بدون شبکه طیفی (PSMRPI) ارایه می شود. معادلات سوبولف که در جریان نفوذ جریان سیال در سنگها، خاکها یا محیطهای مختلف چسبناک مشاهده می شود، به جز در برخی موارد خاص، جواب دقیق ندارند. این مسئله را به سختی می توان حل کرد، به ویژه هنگامی که هندسه دامنه پیچیده تر باشد. در روش PSMRPI، نقاط گره ای نیازی به توزیع منظم ندارند و حتی می توانند کاملاً دلخواه باشند. بوسیله ساخت ماتریس عملیاتی تقریب، مشتقات مرتبه بالا برحسب مقادیر تابع مجهول در نقاط گره ای آسان است. ثابت می کنیم که این روش نسبت به زمان پایداری بی قید و شرط دارد. نتایج اصلی روی معادله سوبولف با چند مثال نشان می دهد که روش PSMRPI قابل اعتماد بوده و خوب عمل می کند.
[1] S. Abbasbandy, H. R. Ghehsareh, M. Alhuthali, H. Alsulami, Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model, Eng. Anal. Boundary. Elem. 39 (2014) 121-128.
[2] S. Abbasbandy, H. R. Ghehsareh, I. Hashim, A meshfree method for the solution of two-dimensional cubic nonlinear Schr¨odinger equation, Eng. Anal. Boundary. Elem. 37 (2013) 885-898.
[3] S. Abbasbandy, H. R. Ghehsareh, I. Hashim, Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function, Eng. Anal. Boundary. Elem. 36 (2012) 1811-1818.
[4] S. Abbasbandy, A. Shirzadi, A meshless method for two-dimensional diffusion equation with an integral condition, Eng. Anal. Boundary. Elem. 34 (2010) 1031-1037.
[5] S. Abbasbandy, A. Shirzadi, MLPG method for two-dimensional diffusion equation with Neumann’s and nonclassical boundary conditions, Appl. Numer. Math. 61 (2011) 170-180.
[6] A. I. Aristov, On exact solutions of a Sobolev equation, Mathematical Notes 101 (2017) 928-941.
[7] D. N. Arnold, J. Douglas, V. Thomee, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Mathematics of computation 36 (1981) 53-63.
[8] M. Aslefallah, S. Abbasbandy, E. Shivanian, Meshless singular boundary method for twodimensional pseudoparabolic equation: analysis of stability and convergence, Journal of Applied Mathematics and Computing 63 (2020) 585-606.
[9] P. Assari, M. Dehghan, A meshless local discrete collocation (mldc) scheme for solving 2-dimensional singular integral equations with logarithmic kernels, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 31 (2018) 11-23.
[10] S. Atluri, The Meshless Method (MLPG) for Domain and BIE Discretizations, Tech. Science Press, 2004.
[11] P. Avilez-Valente, F. Seabra-Santos, A PetrovGalerkin finite element scheme for the regularized long wave equation, Computational Mechanics 34 (2004) 256-270.
[12] F. Bai, D. Li, J. Wang, Y. Cheng, An improved complex variable element-free Galerkin method for two-dimensional elasticity problems, Chin. Phys. B 21 (2012) 20-34.
[13] G. Barenblatt, I. P. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], Journal of applied mathematics and mechanics 24 (1960) 1286-1303.
[14] T. Belytschko, Y. Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37 (1994) 229-256.
[15] Z. Cai, S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM Journal on Numerical Analysis 27 (1990) 636-655.
[16] B. Dai, Y. Cheng, An improved local boundary integral equation method for twodimensional potential problems, Int. J. Appl. Mech. 2 (2010) 421-436.
[17] P. L. Davis, A quasilinear parabolic and a related third order problem, Journal of Mathematical Analysis and Applications 40 (1972) 327-335.
[18] M. Dehghan, A. Ghesmati, Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun. 181 (2010) 772-786.
[19] A. Dogan, Numerical solution of regularized long wave equation using PetrovGalerkin method, Communications in numerical methods in engineering 17 (2001) 485-494.
[20] A. Esen, S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Applied Mathematics and Computation 174 (2006) 833-845.
[21] Matematica Pura d Applicata 114 (1977) 331-349.
[22] R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM Journal on Numerical Analysis 15 (1978) 1125-1150.
[23] H. Fatahi, J. Saberi-Nadjafi, E. Shivanian, A new spectral meshless radial point interpolation (SMRPI) method for the twodimensional Fredholm integral equations on general domains with error analysis, Journal of Computational and Applied Mathematics 294 (2016) 196-209.
[24] A. Fili, A. Naji, Y. Duan, Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions, J. Comput. Appl. Math. 234 (2010) 2456-2468.
[25] F. Gao, J. Cui, G. Zhao, Weak Galerkin finite element methods for Sobolev equation, Journal of Computational and Applied Mathematics 317 (2017) 188-202.
[26] F. Gao, J. Qiu, Q. Zhang, Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation, Journal of Scientific Computing 41 (2009) 436-449.
[27] L. Guo, H. Chen, H1-Galerkin mixed finite element method for the regularized long wave equation, Computing 77 (2006) 205-221.
[28] V. R. Hosseini, E. Shivanian, W. Chen, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, The European Physical Journal Plus 130 (2015) 33-51.
[29] V. R. Hosseini, E. Shivanian, W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusionwave equation with damping, Journal of Computational Physics 312 (2016) 307-332.
[30] S. Jakobsson, B. Andersson, F. Edelvik, Rational radial basis function interpolation with applications to antenna design, J. Comput. Appl. Math. 233 (2009) 889-904.
[31] M. Kamranian, M. Dehghan, M. Tatari, Study of the two- dimensional sine-Gordon equation arising in Josephson junctions using meshless finite point method, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (2016) n/an/aJnm. 2210.
[32] E. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluiddynamics. I. surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990) 127-145.
[33] G. Liu, Y. Gu, A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids, J. Sound Vib. 246 (2001) 29-46.
[34] G. Liu, Y. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, 2005.
[35] Q. Liu, Y. Gu, P. Zhuang, F. Liu, Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Computational Mechanics 48 (2011) 1-12.
[36] G. Liu, L. Yan, J. Wang, Y. Gu, Point interpolation method based on local residual formulation using radial basis functions, Struct. Eng. Mech. 14 (2002) 713-732.
[37] Z. Luo, F. Teng, J. Chen, A PODbased reduced-order CrankNicolson finite volume element extrapolating algorithm for 2D Sobolev equations, Mathematics and Computers in Simulation 146 (2018) 118-133.
[38] Z. Luo, F. Teng, A reduced-order extrapolated finite difference iterative scheme based on POD method for 2D Sobolev equation, Applied Mathematics and Computation 329 (2018) 374-383.
[39] K. Omrani, The convergence of fully discrete Galerkin approximations for the BenjaminBonaMahony (BBM) equation, Applied mathematics and computation 180 (2006) 614-621.
[40] M. Peng, D. Li, Y. Cheng, The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems, Eng. Struc. 33 (2011) 127-135.
[41] A. K. Pani, G. Fairweather, H1- Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA Journal of Numerical Analysis 22 (2002) 231-252.
[42] D. Shi, On the initial boundary value problem of nonlinear the equation of the migration of the moisture in soil, Acta Mathematicae Applicatae Sinica 13 (1990) 31-38.
[43] E. Shivanian, A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms, Engineering Analysis with Boundary Elements 54 (2015) 1-12.
[44] E. Shivanian, Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics, Engineering Analysis with Boundary Elements 37 (2013) 1693-1702.
[45] E. Shivanian, Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-d nonlinear wave equations, Ocean Engineering 89 (2014) 173-188.
[46] E. Shivanian, Local integration of population dynamics via moving least squares approximation, Engineering with Computers 32 (2016) 331-342.
[47] E. Shivanian, Meshless local Petrov Galerkin (MLPG) method for threedimensional nonlinear wave equations via moving least squares approximation, Engineering Analysis with Boundary Elements 50 (2015) 249-257.
[48] E. Shivanian, On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations, International Journal for Numerical Methods in Engineering 105 (2016) 83-110.
[49] E. Shivanian, Spectral meshless radial point interpolation (SMRPI) method to twodimensional fractional telegraph equation, Mathematical Methods in the Applied Sciences 39 (2016) 1820-1835.
[50] E. Shivanian, S. Abbasbandy, M. S. Alhuthali, H. H. Alsulami, Local integration of 2-D fractional telegraph equation via moving least squares approximation, Engineering Analysis with Boundary Elements 56 (2015) 98-105.
[51] E. Shivanian, M. Aslefallah, Stability and convergence of spectral radial point interpolation method locally applied on twodimensional pseudoparabolic equation, Numerical Methods for Partial Differential Equations: An International Journal 33 (2017) 724-741.
[52] E. Shivanian, A. Jafarabadi, An improved spectral meshless radial point interpolation for a class of timedependent fractional integral equations: 2D fractional evolution equation, Journal of Computational and Applied Mathematics 325 (2017) 18-33.
[53] E. Shivanian, A. Jafarabadi, Inverse cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation, Engineering with Computers 33 (2017) 431-442.
[54] E. Shivanian, A. Jafarabadi, More accurate results for nonlinear generalized BenjaminBona-Mahony-Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI), Engineering Analysis with Boundary Elements 72 (2016) 42-54.
[55] E. Shivanian, A. Jafarabadi, Numerical solution of two-dimensional inverse force function in the wave equation with nonlocal boundary conditions, Inverse Problems in Science and Engineering 25 (2017) 1743-1767.
[56] E. Shivanian, A. Jafarabadi, Rayleigh Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation, Engineering with Computers 34 (2018) 77-90.
[57] E. Shivanian, H. R. Khodabandehlo, Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions, The European Physical Journal Plus 129 (2014) 241-253.
[58] E. Shivanian, H. R. Khodabandehlo, Application of meshless local radial point interpolation (MLRPI) on a onedimensional inverse heat conduction problem, Ain Shams Engineering Journal 7 (2016) 993-1000.
[59] E. Shivanian, A. Khodayari, Meshless local radial point interpolation (MLRPI) for generalized telegraph and heat diffusion equation with nonlocal boundary conditions, Journal of Theoretical and Applied Mechanics 55.
[60] E. Shivanian, A. Rahimi, M. Hosseini, Meshless local radial point interpolation to threedimensional wave equation with Neumann’s boundary conditions, International Journal of Computer Mathematics 93 (2016) 2124-2140.
[61] E. S¨uli, Convergence of finite volume schemes for poissons equation on nonuniform meshes, SIAM Journal on Numerical Analysis 28 (1991) 1419-1430.
[62] T. W. Ting, A cooling process according to two-temperature theory of heat conduction, Journal of Mathematical Analysis and Applications 45 (1974) 23-31.
[63] L. Trefethen, Spectral methods in Matlab, SIAM, Philadelphia, PA.
[64] G. E. Fasshauer, Meshfree approximation methods with MATLAB, Vol. 6, World Scientific, 2007.
[65] L. Wahlbin, Error estimates for a Galerkin method for a class of model equations for long waves, Numerische Mathematik 23 (1974) 289-303.
[66] Q. Zhang, F. Gao, A fully-discrete local discontinuous Galerkin method for convectiondominated Sobolev equation, Journal of Scientific Computing 51 (2012) 107-134.