Effect of Cross-Section on the Mixing of Liquid Species in Helix Micromixers, A Numerical Approach
محورهای موضوعی : مجله بین المللی ریاضیات صنعتیT. Dehgani 1 , R. Pirkhoshghiafe 2 , P. Balazadeh 3 , F. Sadegh Moghanlou 4
1 - Department of Mechanical Engineering; University of Mohaghegh Ardabili, Ardabil, Iran.
2 - Department of Mechanical Engineering; Tabriz University, Tabriz, Iran.
3 - Department of Mechanical Engineering; University of Mohaghegh Ardabili, Ardabil, Iran.
4 - Department of Mechanical Engineering; University of Mohaghegh Ardabili, Ardabil, Iran.
کلید واژه: Mixing Index, Micromixer, numerical method, Laminar flow, Secondary flow,
چکیده مقاله :
Micromixers are an important part of microfluidics systems. In the present work, mixing was enhanced through the three helix types of micromixers. As a result of Dean vortices, a mixing index of 99% obtained at a very short length of the micromixers for the Reynolds number of 10. It is also obtained that the micromixer with rectangular cross-section showed better enhancement compared to the circular and triangular cross-section.
میکرومیکسرها بخش مهمی از سیستمهای میکروسیالات هستند. در کار حاضر، اختلاط در سه سطح مقطع بررسی شده است. در اثر تولید گردابه های دین، شاخص اختلاط ۹۹ درصد در طول کوتاهتری از میکرومیکسر ودر رینولدز ۱۰ بدست آمده است. همچنین در مقایسه با سطح مقطع های مثلثی و دایره ای سطح مقطع مستطیلی راندمان بهتری دارد.
[1] F. Sadegh Moghanlou, S. Noorzadeh, M. Ataei, M. Vajdi, M. Shahedi Asl, E. Esmaeilzadeh, Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2water nanoluids, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 315. http://dx.doi.org/10.1007/s40430-020-02403-5/.
[2] M. Fattahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, A. Sabahi Namini, M. Shahedi Asl, Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers, A numerical study, Ceram. Int. 46 (2020). http://dx.doi.org/10.1016/j. ceramint.2020.01.195/.
[3] C. Y. Lee, W. T. Wang, C. C. Liu, L. M. Fu, Passive mixers in microfluidic systems, A review, Chem. Eng. J. 288 (2016) 146-160. http://dx.doi.org/10.1016/j.cej.2015.10.122/.
[4] T. Adibi, S. E. Razavi, O. Adibi, M. Vajdi, F. Sadegh Moghanlou, The response of nano-ceramic doped fluids in heat convection models, A characteristics-based numerical approach, Sci. Iran. In press (2021).
[5] M. Ataei, F. Sadegh Moghanlou, S. Noorzadeh, M. Vajdi, M. Shahedi Asl, Heat transfer and Pressure drop in a minichannel heat sink, Using hybrid Al2O3/TiO2water nanofluid, Heat Mass Transf. (2020).
[6] F. S. Moghanlou, A. S. Khorrami, E. Esmaeilzadeh, H. Aminfar, Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel, Exp. Therm. Fluid Sci. 59 (2014) 24-31
[7] S. Nekahi, M. Vajdi, F. Sadegh Moghan | |||
lou, | K. Vaferi, | A. Motallebzadeh, | M. |
zen, U. Aydemir, J. Sha, M. Shahedi Asl, TiB2 SiC-based ceramics as alternative efficient micro heat exchangers, Ceram. Int. (2019). http://dx.doi.org/10.1016/j.ceramint.2019.06.150/.
[8] M. | Vajdi, | F. | Sadegh | Moghanlou, | E. |
Ranjbarpour Niari, M. Shahedi Asl, M. | |||||
Shokouhimehr, | Heat transfer and pres |
sure drop in a ZrB2 microchannel heat sink, A numerical approach, Ceram. Int. (2019). http://dx.doi.org/10.1016/j. ceramint.2019.09.146/.
[9] F. Sadegh Moghanlou, A. Shams Khorrami, E. Esmaeilzadeh, M. Vajdi, Effect of strong electric field on heat transfer enhancement in a mini channel containing Al2O3/oil nanofluid, J. Brazilian Soc. Mech. Sci. Eng. 43 (2021) 149. http://dx.doi. org/10.1007/s40430-021-02869-x/.
[10] G. Cai, L. Xue, H. Zhang, J. Lin, A Review on Micromixers, Micromachines 8 (2017) 274. http://dx.doi.org 10.3390/mi8090274/.
[11] H. M. Xia, S. Y. M. Wan, C. Shu, Y. T. Chew, Chaotic micromixers using twolayer crossing channels to exhibit fast mixing at low Reynolds numbers, Lab Chip. 5 (2005) 748. http://dx.doi.org/10.1039/b502031j/
[12] S. P. Sullivan, B. S. Akpa, S. M. Matthews, A. C. Fisher, L. F. Gladden, M. L. Johns, Simulation of miscible diffusive mixing in microchannels, Sensors Actuators B Chem. 123 (2007) 1142-1152. http://dx.doi.org/10.1016/j.snb.2006.10.025/.
[13] Z. Chen, M. R. Bown, B. OSullivan, J. M. MacInnes, R. W. K. Allen, M. Mulder, M. Blom, R. vant Oever, Performance analysis of a folding flow micromixer, Microfluid, Nanofluidics 6 (2009) 763-774. http://dx. doi.org/10.1007/s10404-008-0351-z/
[14] N. T. Nguyen, Micromixers, fundamentals, design and fabrication, William Andrew, 2011.
[15] R. L. Webb, N. H. Kim, Principles enhanced heat transfer, CRC Press, 2005.
[16] M. Sakkaki, F. Sadegh Moghanlou, S. Parvizi, H. Baghbanijavid, A. Babapoor, M. Shahedi Asl, Phase change materials as quenching media for heat treatment of 42CrMo4 steels, J. Cent. South Univ, (2020).
[17] V. Hessel, H. Lwe, F. Schnfeld, Micromixersa review on passive and active mixing principles, Chem. Eng. Sci. 60 (2005) 2479-2501. http://dx.doi.org/10.1016/j.ces.2004.11.033/
[18] G. Kunti, A. Bhattacharya, S. Chakraborty, Rapid mixing with high-throughput in a semi-active semi-passive micromixer, Electrophoresis, 38 (2017) 1310-1317. http://dx.doi.org/10.1002/elps.201600393/
[19] R. R. Gidde, P. M. Pawar, B. P. Ronge, P. V. Jadhav, CFD Based Analysis of Simple TJunction and Y-Junction Micro Mixers with Different Obstacles, in: Techno-Societal 2018, Springer International Publishing, Cham, 2020: pp. 357-365. http://dx.doi. org/10.1007/978-3-030-16962-6_37/
[20] T. Dehghani, F. Sadegh Moghanlou, M. Vajdi, M. Shahedi Asl, M. Shokouhimehr, M. Mohammadi, Mixing enhancement through a micromixer using topology optimization, Chem. Eng. Res. Des. 161 (2020) 187-196. http://dx.doi.org/10.1016/j. cherd.2020.07.008/
[21] Z. Hajati, F. Sadegh Moghanlou, M. Vajdi, E. Razavi, S. Matin, Fluid Structure Interaction of blood flow around a vein valve, BioImpacts, (2020).
[22] M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, F. Pishgar, M. Shokouhimehr, M. Shahedi Asl, The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool, Ceram. Int. 45 (2019). http://dx.doi.org/10.1016/j.ceramint.2019.07.241/
[23] F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr, M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB ceramic cutting tools, Ceram. Int. (2019). http://dx.doi.org/10.1016/j.ceramint.2019.05.095/
[24] F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr, M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools, Ceram. Int. 45 (2019) 15892-15897. http://dx.doi.org/10.1016/j.ceramint.2019.05.095/
[25] S. Nekahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, M. Shahedi Asl, M. Shokouhimehr, A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2, Ceram. Int. (2019). http://dx.doi.org/10.1016/j.ceramint.2019.08.112/
[26] K. Vaferi, S. Nekahi, M. Vajdi, F. Sadegh Moghanlou, M. Shokouhimehr, A. Motallebzadeh, J. Sha, M. Shahedi Asl, Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade, Ceram. Int. 45 (2019). http://dx.doi.org/10.1016/j.ceramint.2019.06.184/
[27] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54-61. http://dx.doi.org/10.53063/synsint.2021.117/
[28] M. Vajdi, S. Mohammad Bagheri, F. Sadegh Moghanlou, A. Shams Khorrami, Numerical investigation of solar collectors as a potential source for sintering of ZrB2, Synth. Sinter. 1 (2021) 76-84. http://dx.doi.org/10.53063/synsint.2021.128/
[29] X. Chen, T. Li, H. Zeng, Z. Hu, B. Fu, Numerical and experimental investigation on micromixers with serpentine microchannels, Int. J. Heat Mass Transf. 98 (2016) 131-140. http://dx.doi.org/10.1016/j. ijheatmasstransfer.2016.03.041/
[30] X. Chen, T. Li, A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel, Chem. Eng. J. 313 (2017) 1406-1414. http://dx.doi.org/10.1016/j.cej.2016.11.052/
[31] L. Wang, S. Ma, X. Wang, H. Bi, X. Han, Mixing enhancement of a passive microfluidic mixer containing triangle baffles, AsiaPacific J. Chem. Eng. 9 (2014) 877-885. http://dx.doi.org/10.1002/apj.1837/
[32] R. T. Tsai, C. Y. Wu, An efficient micromixer based on multidirectional vortices due to baffles and channel curvature, Biomicrofluidics 5 (2011) 014103. http://dx.doi.org/10.1063/1.3552992/
[33] X. Chen, Z. Zhang, D. Yi, Z. Hu, Numerical studies on different two-dimensional micromixers basing on a fractal-like tree network, Microsyst, Technol. 23 (2017) 755-763. http://dx.doi.org/10.1007/ s00542-015-2742-x/
[34] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, D. J. Beebe, Passive mixing in a threedimensional serpentine microchannel, J. Microelectromechanical Syst. 9 (2000) 190-197. http://dx.doi.org/10.1109/84.846699/
[35] C. Kleinstreuer, | J. Li, | J. Koo, delivery, |
Mi Int. |
crofluidics | of | nano-drug |
J. Heat Mass Transf. 51 (2008) 5590-5597. http://dx.doi.org/10.1016/j. ijheatmasstransfer.2008.04.043/
[36] X. Chen, J. Shen, Numerical analysis of mixing behaviors of two types of E-shape micromixers, Int. J. Heat Mass Transf. 106 (2017) 593-600. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.034/
[37] S. Wong, M. Ward, C. Wharton, Micro Tmixer as a rapid mixing micromixer, Sensors Actuators B Chem. 100 (2004) 359-379. http://dx.doi.org/10.1016/j.snb.2004.02.008/
[38] J. Judy, D. Maynes, B. W. Webb, Characterization of frictional pressure drop for liquid flows through microchannels, Int. J. Heat Mass Transf. 45 (2002) 3477-3489. http://dx.doi.org/10.1016/S0017-9310(02)00076-5/
[39] P. V. Danckwerts, The definition and measurement of some characteristics of mixtures,Appl. Sci. Res. 3 (1952) 279-296. http: //dx.doi.org/10.1007/BF03184936/