غلظت عناصر کم مصرف در گیاه آزولا در محیط آلوده به کادمیوم و شوری
محورهای موضوعی :
آلودگی های محیط زیست (آب، خاک و هوا)
صلاح الدین مرادی
1
,
لیلا جهانبان
2
,
طیبه بساکی
3
1 - استادیار گروه کشاورزی دانشگاه پیام نور صندوق پستی 3697-19395 تهران، ایران (مسئول مکاتبات)
2 - استادیار گروه کشاورزی دانشگاه پیام نور صندوق پستی 3697-19395 تهران، ایران
3 - گروه کشاورزی دانشگاه پیام نور صندوق پستی 3697-19395 تهران، ایران.
تاریخ دریافت : 1397/02/01
تاریخ پذیرش : 1397/09/14
تاریخ انتشار : 1401/07/01
کلید واژه:
کادمیم,
آزولا,
شوری,
عناصر غذایی کم مصرف,
چکیده مقاله :
زمینه و هدف: پیشرفت سریع فناوری در دهه های اخیر با وجود مزایای فراوانی که برای بشر داشته، منابع طبیعی و اجزای محیط زیست را در معرض آلاینده های مختلف از جمله فلزات سنگین و سمی قرار داده است.
روش بررسی: جهت بررسی پتانسیل آزولا، برای جذب کادمیم و عناصر غذایی کم مصرف از محلول های با شوری های مختلف یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه اجرا شد. سطوح کادمیم عبارت بود از صفر، 5، 10، 20، 40 و 80 میلی گرم در لیتر کادمیم که از منبع سولفات کادمیم به محلول غذایی اپستین اضافه شد. غلظت نمک عبارت بود از صفر، 10، 20، 40 و 80 میلی مولار که از منبع کلرور سدیم به محلول غذایی اپستین اضافه گردید.
یافته ها: نتایج نشان داد که آزولا غلظت های بالایی از کادمیم را در بافت های خود تجمع داد. شوری باعث افزایش جذب کادمیم به وسیله آزولا شد. کادمیم موجود در محلول سبب افزایش غلظت کادمیم (در گیاه)، سدیم، منگنز و مس و کاهش غلظت آهن و روی شد. سطوح شوری سبب افزایش غلظت کادمیم و سدیم و کاهش غلظت آهن، روی، منگنز و مس شد. تیمارهای اثرات متقابل کادمیم و شوری سبب افزایش غلظت کادمیم و سدیم و کاهش غلظت آهن و روی شدند.
بحث و نتیجه گیری: وجود عنصر سنگین کادمیم و شوری باعث کاهش رشد و حتی باعث مرگ حتمی گیاه در غلظت های بالا شد.
چکیده انگلیسی:
Introduction: Rapid technological advances in recent decades are despite the many benefits for human, exposed the natural resources and environmental components to various contaminants such as heavy and toxic metals.
Materials and Methods: In order to evaluate the potential of azolla, to absorb cadmium and micronutrient from solution contaning different concentrations of salinity, a factorial experiment with completely randomized design and three replications were conducted in the greenhouse. Cadmium was used from cadmium sulfate at the levels of 0, 5, 10, 20, 40, and 80 mg/liter using Epestin nutrient solution. The concentrations of NaCl in Epestin nutrient solutions were 0, 10, 20, 40 and 80 mM.
Results: The azolla accumulated high concentration of cadmium solutions in their tissues. Assessing the effect of salinity on cadmium of the azolla indicated that increase in salinity levels of nutrient solution, increased cadmium concentration. Cadmium solutions increasing concentrations of cadmium (in plant), sodium, manganese, copper and decrease iron and zinc. Salinity treatments increased cadmium and sodium and decreasing concentrations of iron, zinc, manganese and copper. Mutual effects of cadmium and salinity treatments increased cadmium and sodium and decreasing concentrations of iron and zinc.
Conclusion: Aplications of cadmium and salinity decreased the growth rate of azolla and even caused death where their concentrations were high.
منابع و مأخذ:
Kabata-Pendias, A. and Pendias, H. 1989. Trace Elements in the Soil and Plants. Florida: CRC Press.
Feldmann, J. 2001. An appetite for Arsenic. Chemis. in Britain. 31–32.
Sari, A. and Tuzen, M. 2008. Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater, 157: 448-454.
Zhang, G., Fukami, M. and Sekimoto, H. 2002. Influence of cadmium on minral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research. 77:93-98.
Nirmal Bhargavi, V. L. and Sudha, P. N. 2011. Effect of Salinity and pH on the Accumulation of Heavy Metals in Sunflower (Helianthus Annus) Plant. ECO Services International.
Khoshgoftarmanesh, A. H., Shariatmadari, H., Karimian, N. and van der Zee, S.E.A.T.M. 2006. Cadmium and Zinc in Saline Soil Solutions and their Concentrations in Wheat. Soil Sci. Society America J., 70:582-589.
Demirezen Yılmaz, D.2007. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). J. Hazard Mater, 147: 74-77.
Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 55:141–146.
Epstein Emanuel. 1972. Mineral Nutrition of Plants: Principles and Perspectives. New York. John Wiley, pp. 412.
Baker, A. J. M., and Proctor. 1990. The influence of cadmium, copper, lead and zinc on the distribution and evolution of metallophyte in the British Island. Plant sys. Evol. 173: 91-108.
Kabata-Pendias, A. Pendias, H. 2001. Trace elements in soils and plants. Boca Raton, FL: CRC Press.
Singh, B. and Myhr, K. 1998. Cadmium uptake by barley as effected by Cd sources pH levels. Geoderma, 84:185-194.
Stoeppler, M. 1991. Cadmium, in metals and their compounds in the environment. Merian (Ed), V C H. Weinham. Environmen. Pollut. 98 (1): 20-36.
Vassilev, A., Vangronsveld, J. and Yordanov, I. 2002. Cadmium phytoextration; present state, biological backgrounds and reaserch needs –review. Plant Physiol. 28:68-95.
Schutzendubel, A. and Polle, A. 2002. Plant responses to abiotic stress: heavy metal – induced oxidative stress and protection by mycorhization. Exprimen. Botany. 53:1351-1365.
Das, p., Samantary, S. and Rout, G. R. 1997. Studies of cadmium toxicity in plants – Review. Environ. Pollut. 98 (1): 2o – 36
Mok, M. 1994. Cytokinins and plant development- An overview. PP. 155-166. In: Mok, D. and M. Mok (Eds.), Cytokinins: Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.
Gallego, S. M, Benavides, M. P. and Tomaro, M. L. 1996. Oxidative damage caused by cadmium chloride in sunflower (Helianthus annuus, L.) plants. Phyton – Int. J. Exp. Bot. 58: 41-52.
Noraho, N., J. P. Gaur. 1995. Effect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza L. Biometals. Volume 8, Issue 2, pp 95-98.
Dong, J., Wu, F. and Zhang, G. 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere. 64:1659-1666.
Ciecko, Z., Kalembasa, S., Wyszkowski, M. and Rolka, E. 2004. The effect of elevated cadmium content in soilon the uptake of nitrogen by plants. Plant Soil Environ. 50 (7): 283–294.
Wang, L., Zhou, Q., Ding, L. and Sun, Y. 2008. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. Hazard. Mater.154:818-825.
Rudio, M., Escrig, I., Martine, G., Lopez, C., Bent, F. and Sanz, A. 1994. Cd and Ni accumulation in rice plant, Effects on mineral nutrition and possible interaction of abscisic and gebberelic acid. Plant Growth Regul. 14: 151-157.
Nocito, F. F., Pirovano, L. Cocucci, M. and Sacchi, G. A. 2002. Cadmium-induced sulphate uptake in maize roots. Plant Physiol. 129: 1872-1879.
Shah, K. and Dubey, R. S. 1998. Cadmium suppresses phosphate level and inhibits the activity of phosphatases in growing rice seedlings. J. Agron. Crop Sci. 180: 223-231.
Khan, N. A., Ahmad, I., Singh, S. and Nazar. R. 2006. Variation in growth, photosynthesis and yield of five wheat cultivars exposed to cadmium stress. World J. of Agric. Sci., 2(2): 223-226.
Haouari, C. C., Nasraoui, A. H., Bouthour, D., Houda, M. D., C. B., Daieb, Mnai, J. and Gouia, H. 2012. Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. Afric. J. Plant Sci. 6(1): 1-7.
Mobin, M., Khan, N. A. 2007. Photosynthetic activity pigment composition and antioxidative response of two mustard cultivars differing in photosynthetic capacity subjected to cadmium stress. J. plant Physiol., 164:601-610.
Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas and L. A. Del Rio. 2001. Cadmium– induced changes in the growth and oxidative metabolism of pea plants. Experiment. Botany 52(364): 2115-2126.
Sharma, R. K., Agrawal, M. and Agrawal, S. B. 2008. Interactive effects of cadmium and zinc on carrots: Growth and biomass accumulation. J. Plant Nutr. 31: 19-34.
Hernandez, L. E., Carpenaruiez, R. and Garate, A. 1996. Alternation in the mineral nutrition of pea seedlings exposed to cadmium. J. Plant Nutr. 19: 1581- 1598.
Baker, R. and F. S. Simpson. 1998. Cleanup Order Issued to Chroma Crankshaft. California Environmental Protection Agency, Department of Toxic Substances Control, Sacramento, CA.
Veselov, D., G. Kuudoyarova, M. Syymonyan and S. T. Veselov. 2003. Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seadlings. Plant Physiol. 117: 353-359.
Yildiz, N. 2005. Response of Tomato and Corn plants to increasing Cd levels in nutrient culture. Pak. J. Bot., 37(3): 593-599.
Abdel-Sabour, M. F., Mortvedt, J. J. and Kelson, J. J. 1988. Cadmium-Zinc interaction in plants and extractable cadmium and zinc fractions in soil. Soil Sci. 145 (6): 426-431.
Khoshgoftarmanesh, A., Karimian, H., Kalbasi, N, Van Der Zee, M. and Parker, S. 2004. Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Sci. Society America J., 68(6): 1885-1889.
McLauglin M., Palmer L., Beech T., and Smart M. 1994. Increasing Soil salinity causes elevated cadmium concentrations in field-grown potato tubers. J. Environ. Qual. 23:1013-1018.
_||_
Kabata-Pendias, A. and Pendias, H. 1989. Trace Elements in the Soil and Plants. Florida: CRC Press.
Feldmann, J. 2001. An appetite for Arsenic. Chemis. in Britain. 31–32.
Sari, A. and Tuzen, M. 2008. Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater, 157: 448-454.
Zhang, G., Fukami, M. and Sekimoto, H. 2002. Influence of cadmium on minral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research. 77:93-98.
Nirmal Bhargavi, V. L. and Sudha, P. N. 2011. Effect of Salinity and pH on the Accumulation of Heavy Metals in Sunflower (Helianthus Annus) Plant. ECO Services International.
Khoshgoftarmanesh, A. H., Shariatmadari, H., Karimian, N. and van der Zee, S.E.A.T.M. 2006. Cadmium and Zinc in Saline Soil Solutions and their Concentrations in Wheat. Soil Sci. Society America J., 70:582-589.
Demirezen Yılmaz, D.2007. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). J. Hazard Mater, 147: 74-77.
Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 55:141–146.
Epstein Emanuel. 1972. Mineral Nutrition of Plants: Principles and Perspectives. New York. John Wiley, pp. 412.
Baker, A. J. M., and Proctor. 1990. The influence of cadmium, copper, lead and zinc on the distribution and evolution of metallophyte in the British Island. Plant sys. Evol. 173: 91-108.
Kabata-Pendias, A. Pendias, H. 2001. Trace elements in soils and plants. Boca Raton, FL: CRC Press.
Singh, B. and Myhr, K. 1998. Cadmium uptake by barley as effected by Cd sources pH levels. Geoderma, 84:185-194.
Stoeppler, M. 1991. Cadmium, in metals and their compounds in the environment. Merian (Ed), V C H. Weinham. Environmen. Pollut. 98 (1): 20-36.
Vassilev, A., Vangronsveld, J. and Yordanov, I. 2002. Cadmium phytoextration; present state, biological backgrounds and reaserch needs –review. Plant Physiol. 28:68-95.
Schutzendubel, A. and Polle, A. 2002. Plant responses to abiotic stress: heavy metal – induced oxidative stress and protection by mycorhization. Exprimen. Botany. 53:1351-1365.
Das, p., Samantary, S. and Rout, G. R. 1997. Studies of cadmium toxicity in plants – Review. Environ. Pollut. 98 (1): 2o – 36
Mok, M. 1994. Cytokinins and plant development- An overview. PP. 155-166. In: Mok, D. and M. Mok (Eds.), Cytokinins: Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.
Gallego, S. M, Benavides, M. P. and Tomaro, M. L. 1996. Oxidative damage caused by cadmium chloride in sunflower (Helianthus annuus, L.) plants. Phyton – Int. J. Exp. Bot. 58: 41-52.
Noraho, N., J. P. Gaur. 1995. Effect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza L. Biometals. Volume 8, Issue 2, pp 95-98.
Dong, J., Wu, F. and Zhang, G. 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere. 64:1659-1666.
Ciecko, Z., Kalembasa, S., Wyszkowski, M. and Rolka, E. 2004. The effect of elevated cadmium content in soilon the uptake of nitrogen by plants. Plant Soil Environ. 50 (7): 283–294.
Wang, L., Zhou, Q., Ding, L. and Sun, Y. 2008. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. Hazard. Mater.154:818-825.
Rudio, M., Escrig, I., Martine, G., Lopez, C., Bent, F. and Sanz, A. 1994. Cd and Ni accumulation in rice plant, Effects on mineral nutrition and possible interaction of abscisic and gebberelic acid. Plant Growth Regul. 14: 151-157.
Nocito, F. F., Pirovano, L. Cocucci, M. and Sacchi, G. A. 2002. Cadmium-induced sulphate uptake in maize roots. Plant Physiol. 129: 1872-1879.
Shah, K. and Dubey, R. S. 1998. Cadmium suppresses phosphate level and inhibits the activity of phosphatases in growing rice seedlings. J. Agron. Crop Sci. 180: 223-231.
Khan, N. A., Ahmad, I., Singh, S. and Nazar. R. 2006. Variation in growth, photosynthesis and yield of five wheat cultivars exposed to cadmium stress. World J. of Agric. Sci., 2(2): 223-226.
Haouari, C. C., Nasraoui, A. H., Bouthour, D., Houda, M. D., C. B., Daieb, Mnai, J. and Gouia, H. 2012. Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. Afric. J. Plant Sci. 6(1): 1-7.
Mobin, M., Khan, N. A. 2007. Photosynthetic activity pigment composition and antioxidative response of two mustard cultivars differing in photosynthetic capacity subjected to cadmium stress. J. plant Physiol., 164:601-610.
Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas and L. A. Del Rio. 2001. Cadmium– induced changes in the growth and oxidative metabolism of pea plants. Experiment. Botany 52(364): 2115-2126.
Sharma, R. K., Agrawal, M. and Agrawal, S. B. 2008. Interactive effects of cadmium and zinc on carrots: Growth and biomass accumulation. J. Plant Nutr. 31: 19-34.
Hernandez, L. E., Carpenaruiez, R. and Garate, A. 1996. Alternation in the mineral nutrition of pea seedlings exposed to cadmium. J. Plant Nutr. 19: 1581- 1598.
Baker, R. and F. S. Simpson. 1998. Cleanup Order Issued to Chroma Crankshaft. California Environmental Protection Agency, Department of Toxic Substances Control, Sacramento, CA.
Veselov, D., G. Kuudoyarova, M. Syymonyan and S. T. Veselov. 2003. Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seadlings. Plant Physiol. 117: 353-359.
Yildiz, N. 2005. Response of Tomato and Corn plants to increasing Cd levels in nutrient culture. Pak. J. Bot., 37(3): 593-599.
Abdel-Sabour, M. F., Mortvedt, J. J. and Kelson, J. J. 1988. Cadmium-Zinc interaction in plants and extractable cadmium and zinc fractions in soil. Soil Sci. 145 (6): 426-431.
Khoshgoftarmanesh, A., Karimian, H., Kalbasi, N, Van Der Zee, M. and Parker, S. 2004. Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Sci. Society America J., 68(6): 1885-1889.
McLauglin M., Palmer L., Beech T., and Smart M. 1994. Increasing Soil salinity causes elevated cadmium concentrations in field-grown potato tubers. J. Environ. Qual. 23:1013-1018.